• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University of Maryland researchers make strides in Schizophrenia diagnosis research

Bioengineer by Bioengineer
February 9, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLLEGE PARK, MD — Researchers from the University of Maryland College Park (UMD) and Baltimore (UMB) campuses have developed a blood test that could help doctors more quickly diagnose schizophrenia and other disorders. Their study, "Redox Probing for Chemical Information of Oxidative Stress," was recently published in the journal Analytical Chemistry.

"We hope our new technique will allow a more rapid detection and intervention for schizophrenia, and ultimately lead to better outcomes," said Gregory Payne, one of the authors and a joint professor with UMD's Fischell Department of Bioengineering (BIOE) and the Institute for Bioscience and Biotechnology Research (IBBR).

Schizophrenia is a chronic, severe mental disorder that affects approximately one percent of the U.S. adult population and influences how a person thinks, feels, and behaves. The onset of symptoms usually begins between ages 16 and 30. Symptoms can range from visual and auditory hallucinations and movement disorders to difficulty beginning and sustaining activities.

Currently, diagnosing schizophrenia and similar disorders requires a thorough psychological evaluation and a comprehensive medical exam to rule out other conditions. A patient may be evaluated for six or more months before receiving a diagnosis and beginning treatment, particularly if he or she shows only early signs of the disorder.

Recent studies have indicated that patient outcomes could be improved if the time elapsed between the onset of symptoms and the initiation of treatment is much shorter. For this reason, researchers believe a chemical test that could detect oxidative stress in the blood — a state commonly linked with schizophrenia and other psychiatric disorders — could be invaluable in helping to diagnose schizophrenia more quickly.

The UMD and UMB team, led by research associate Eunkyoung Kim, used a discovery-driven approach based on the assumptions that chemical biomarkers relating to oxidative stress could be found in blood, and that they could be measured by common electrochemical instruments.

Building on an understanding of how foods are tested for antioxidants, an iridium salt was used to probe blood serum samples for detectable optical and electrochemical signals that indicate oxidative stress in the body. The promising initial tests have shown various biological reductants can be detected, including glutathione, the most prominent antioxidant in the body.

The group worked with professor of psychiatry Deanna Kelly and her team at the Maryland Psychiatric Research Center, University of Maryland School of Medicine, to perform an initial clinical evaluation using serum samples from 10 clinical research study participants who had been diagnosed with schizophrenia, and a healthy control group. Using the new testing method, the research group was able to correctly differentiate the samples of those who had been diagnosed with schizophrenia from those who had no history of the disorder.

"Much emerging data suggests that schizophrenia and other psychiatric disorders may be due, in part, to inflammation and oxidative stress abnormalities," Kelly said. "Current methods for measuring these potential biomarkers are not standardized and have many flaws. Our team is excited to work with our collaborators at the University of Maryland to help develop a technique that can more globally measure these outcomes. Being able to have a subjective marker for clinical response or aid in more prompt diagnosis could be revolutionary."

###

Researchers from the university's Fischell Department of Bioengineering (BIOE), Institute for Bioscience and Biotechnology Research (IBBR), Institute for Systems Research (ISR), Department of Electrical and Computer Engineering (ECE), and MEMS Sensors and Actuators Laboratory (MSAL), as well as the University of Maryland School of Medicine's Psychiatric Research Center, contributed to the paper. The full list of authors is: Eunkyoung Kim (BIOE/IBBR), Thomas E. Winkler (BIOE/MSAL), Christopher Kitchen (Maryland Psychiatric Research Center), Mijeong Kang (BIOE/IBBR), George Banis (BIOE/MSAL), William Bentley (BIOE/IBBR), Deanna Kelly (Maryland Psychiatric Research Center, University of Maryland School of Medicine), Reza Ghodssi (ISR/ECE/MSAL/BIOE), and Gregory Payne (BIOE/IBBR).

This research is supported by the National Science Foundation, the Defense Threat Reduction Agency, and the National Institutes of Health.

The A. James Clark School of Engineering at the University of Maryland serves as the catalyst for high-quality research, innovation, and learning, delivering on a promise that all graduates will leave ready to impact the Grand Challenges (energy, environment, security, and human health) of the 21st century. The Clark School is dedicated to leading and transforming the engineering discipline and profession, to accelerating entrepreneurship, and to transforming research and learning activities into new innovations that benefit millions. Visit us online at http://www.eng.umd.edu and follow us on Twitter @ClarkSchool.

Media Contact

Alyssa Wolice
[email protected]
301-405-3936
@UMDRightNow

http://www.umdrightnow.umd.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

September 16, 2025

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

September 16, 2025

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

September 16, 2025

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.