• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Jawless ‘bite’ from the past: Jurassic fossils shed light on lamprey evolution

Bioengineer by Bioengineer
November 2, 2023
in Biology
Reading Time: 3 mins read
0
Reconstruction of the Jurassic (ca. 160 million years ago) lampreys Yanliaomyzon from the Yanliao Biota, northern China
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences and their collaborators have reported two extremely rare fossil lampreys from the Jurassic of northern China and revised our understanding of lamprey evolution.

Reconstruction of the Jurassic (ca. 160 million years ago) lampreys Yanliaomyzon from the Yanliao Biota, northern China

Credit: NICE Vistudio

Researchers from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences and their collaborators have reported two extremely rare fossil lampreys from the Jurassic of northern China and revised our understanding of lamprey evolution.

The study was published in Nature Communications on Oct. 31.

The precious specimens were discovered in the famed Lagerstätte Yanliao Biota from rocks dating back 158–163 million years. One of them, Yanliaomyzon occisor or “Yanliao sucker killer,” is 642 mm long (about 25 inches) and is the largest fossil lamprey ever found.

Both fossils superbly preserve the lampreys’ keratinous teeth. After carefully examining the fossils, the scientists reinterpreted lamprey evolution, particularly their feeding apparatus, life cycle, and historic biogeography.

The Jurassic fossils’ feeding apparatus strikingly resembles that of the living pouched lamprey Geotria australis, a flesh-feeding species. “Our study resolved these Jurassic lampreys as the closest fossil relatives to extant lampreys,” said WU Feixiang, lead author of the study.

“Contrary to conventional wisdom that modern lampreys’ ancestors fed on blood, our study showed that these two Jurassic lampreys must be flesh eaters, which foreshadows the flesh-eating habit of the most recent common ancestor of modern lampreys,” added WU.

The study also recognized the Jurassic as a watershed in lamprey evolutionary history.

During the earlier Paleozoic era, lampreys may not have been predacious like their living relatives. This is based on consideration of Paleozoic lampreys’ dwarfed body size and weak, simply assembled teeth. Furthermore, most other contemporaneous ancient fishes were heavily armored—with hard scales and body covers that prevented these tiny lampreys from biting through. However, as the abundant emergence of the ‘advanced’ teleost fishes with thinned scales since the Early Jurassic—changes that increased food availability—lampreys also changed.

“The abundant emergence of advanced teleost fishes with thinned scales by the Early Jurassic might have provided an important evolutionary opportunity for lampreys,” said WU. “With the enhanced feeding structures, Jurassic lampreys onward were able to grow sufficiently large to meet the energy requirement of the evolution of a ‘prolonged’ life cycle interposed by the metamorphosis stage and involved in dramatic environmental shifts.”

A time-calibrated family tree is the basis of an evolutionary history narrative. Inference of the time tree for lamprey evolution was performed in a Bayesian total-evidence dating framework. “Compared with the parsimony method, Bayesian inference is able to integrate various sources of information in a probabilistic setting while accounting for the uncertainties of the parameters, thus avoiding ad-hoc determinations and partial use of the data,” said ZHANG Chi, another corresponding author of the study.

This method also makes possible the inference of ancestral geographical areas for lampreys. The history of the anti-tropical distribution pattern of lampreys has baffled biogeographers due to the extremely thin fossil record of the group. With the calibrations of the Jurassic lampreys, the lineage of the pouched lamprey in the Southern Hemisphere was resolved as the earliest diverged lineage among living lampreys. Thus, the study estimates that modern lampreys originated in the Southern Hemisphere during the Late Cretaceous. This contradicts the conventional wisdom that lampreys originated in the Northern Hemisphere, where most extant lamprey species live.

“This discovery clearly indicates that the extant southern lampreys retain a feeding morphology that already arose in the Jurassic, and that modern lamprey phylogeny is now consistent with a Southern Hemisphere origin, combined with an adaptation to a carnivorous diet,” said Prof. Philippe JANVIER of France’s National Museum of National History, a co-author of the study.

Although large gaps in the long evolutionary history of lampreys still exist, the discovery of Jurassic lamprey fossils is expected to promote more research in the future.



Journal

Nature Communications

DOI

10.1038/s41467-023-42251-0

Article Title

The rise of predation in Jurassic lampreys

Article Publication Date

31-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

HSPB1 Alters Obesity Metabolism Differently by Sex

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025
Unraveling the Mysteries of ‘Chemo Brain’

Unraveling the Mysteries of ‘Chemo Brain’

October 13, 2025

IL1B Gene Variants Linked to Schizophrenia in Iranians

October 13, 2025

Impact of Sex Differences on Health: A Review

October 13, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Matrix Solving with Resistive RAM Technology

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.