• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Next-generation influenza B vaccines provide broad and long-lasting protection against flu viruses in preclinical tests

Bioengineer by Bioengineer
October 31, 2023
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent preclinical results indicate novel next-generation vaccine candidates developed at Cleveland Clinic protect against multiple strains of influenza and last longer than vaccines currently in use.

Ted Ross, PhD, Global Director of Vaccine Development at Cleveland Clinic

Credit: Cleveland Clinic

Recent preclinical results indicate novel next-generation vaccine candidates developed at Cleveland Clinic protect against multiple strains of influenza and last longer than vaccines currently in use.

The vaccines are part of Cleveland Clinic’s global vaccine research program, led by Ted Ross, PhD, Global Director of Vaccine Development at Cleveland Clinic. Published in Scientific Reports, the study credits the preclinical success of the influenza B vaccines to novel technology called Computationally Optimized Broadly Reactive Antigens (COBRAs).

Current vaccines use small, non-infectious parts of the virus or bacterium called antigens to train the immune system against infection. Keeping that immunity current can require yearly updates as the pathogen mutates, like for the flu vaccine. COBRAs are antigens designed to train the immune system’s response more broadly to anticipate any changes.

“Seasonal influenza vaccines are mostly effective against pathogens with antigens matching the vaccine formulation,” says study first author Michael Carlock, program manager in Dr. Ross’s lab and PhD student at the University of Georgia. “Viruses like to mutate constantly. If their antigens change too much, our immune system won’t recognize them as the pathogen that the vaccine trained them to fight. We constantly need to update our vaccines to keep up with these new variants and mutations.”

Further complicating the issue, a strain can mutate into multiple variants, and multiple strains of the same virus can break out at the same time. Vaccines made using an antigen specific to one strain or variant aren’t always as effective against another.

Vaccine developers currently use a combination of statistics and public health data to predict what flu strains will be the most common that year. They use antigens from those strains to make their vaccines. However, often by the time vaccines are manufactured and distributed, strains can mutate and render the vaccines less effective, Carlock says.

“Between 2001 and 2012, the influenza B strain used to make the flu shot matched the main influenza B strain infecting the population about 50% of the time,” he says, “The vaccines weren’t as effective as they could have been. That’s part of why some flu seasons are worse than others.”

The COBRA technology, says Carlock, eliminates the guesswork from antigen selection to protect against multiple diverse strains of the virus. The technology uses public databases of sequences and bioinformatic programs to analyze hundreds of flu strains over years’ worth of flu seasons. The analysis identifies conserved regions of antigens most likely to be present in many viral strains and least likely to mutate over time.

The computer models behind COBRA can be used in multiple viruses, including influenza, SARS-CoV-2, HIV, respiratory syncytial virus (RSV) and many insect-borne viruses. Carlock and Dr. Ross say the success of their influenza B vaccine candidates serves as a proof-of-concept for COBRA as a whole.

When the influenza B COBRA vaccines were tested in preclinical models, they performed even better than expected. They protected against multiple strains of influenza B and even protected against strains between the two different lineages of influenza B. There was also evidence that the COBRA vaccines are longer-lasting than current technology.

“We used old strains isolated prior to 2013 to design these vaccines, but they protected against new strains circulating in 2023,” says Carlock. “The vaccines that public health officials actually made from and used against those strains ten years ago cannot protect against modern viruses. Our COBRA vaccines provide broad, long-lasting protection against many viruses over many years.”

Clinical trials are planned to test the effectiveness of COBRA-based influenza vaccines against influenza in humans.

“The preclinical success of these vaccines is exciting because it shows our platform’s promise in addressing public health threats effectively and proactively,” Dr. Ross says. “As we continue to expand Cleveland Clinic’s global vaccine research, technologies like COBRA are critical to serving the communities we reach all over the world.”

 



Journal

Scientific Reports

DOI

10.1038/s41598-023-43003-2

Article Title

A computationally optimized broadly reactive hemagglutinin vaccine elicits neutralizing antibodies against influenza B viruses from both lineages

Article Publication Date

23-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.