• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

For the sunflower, turning toward the sun requires multiple complex systems

Bioengineer by Bioengineer
October 31, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A sunflower’s ability to track the sun east to west during the day, and to face east again before the next sunrise, relies on multiple types of photoresponses, according to a new study publishing October 31st in the open access journal PLOS Biology by Stacey Harmer and colleagues at the University of California Davis, US. The results deepen the understanding of this well-known plant behavior, and upend previous assumptions about its dependence on a canonical light-dependent response pathway.

For the sunflower, turning toward the sun requires multiple complex systems

Credit: Maksim Goncharenok, Pexels (CC0, https://creativecommons.org/publicdomain/zero/1.0/)

A sunflower’s ability to track the sun east to west during the day, and to face east again before the next sunrise, relies on multiple types of photoresponses, according to a new study publishing October 31st in the open access journal PLOS Biology by Stacey Harmer and colleagues at the University of California Davis, US. The results deepen the understanding of this well-known plant behavior, and upend previous assumptions about its dependence on a canonical light-dependent response pathway.

Because plants are rooted in place, they can’t get up and move when a neighbor blocks their light or they find themselves sprouting in a shady spot. Instead, they rely on growth or elongation to maneuver toward the light. There are several molecular systems to facilitate such responses, the best-known of which is called the phototropic response. In this system, blue light falling unevenly on a seedling is sensed by proteins called phototropins, which cause redistribution of a plant hormone, ultimately causing the growing tip to bend toward the light.

Whether the sun-tracking ability of the sunflower, called heliotropism, is a form of phototropic response, involving the same receptors and hormone, has not been clear. To explore this question, the authors compared gene activity patterns of sunflowers bending toward blue light in the lab to sunflowers tracking the sun in the field.

Surprisingly, only a few of the genes whose rapid upregulation is responsible for the phototropic bending in the lab showed significant differences in activity in response to the movement of the sun. Along with these few, they found changes in other light-response systems, including a shade avoidance system that senses far-red light (enriched in shade), which was triggered on the west side of the sunflower stem early in the day, when the sun is in the east. But, complicating the picture further, they showed that depletion of either red and far-red or blue light had little effect on the sunflower’s ability to track the sun, suggesting that multiple systems may coordinate to produce the heliotropic response, allowing it to operate even in the absence of one or more light triggers.

Harmer adds, “We’ve been continually surprised by what we’ve found as we study how sunflowers follow the sun each day. In this paper, we report that they use different molecular pathways to initiate and maintain tracking movements, and that the photoreceptors best known for causing plant bending seem to play a minor role in this remarkable process.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002344

Citation: Brooks CJ, Atamian HS, Harmer SL (2023) Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 21(10): e3002344. https://doi.org/10.1371/journal.pbio.3002344

Author Countries: United States

Funding: This work was supported by grants from the National Science Foundation (1238040 and 1759942) and the National Institute of Food and Agriculture (CA-D-PLB-2259-H) to SLH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002344

Method of Research

Experimental study

Subject of Research

Not applicable

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025
Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

Fluoxetine’s Impact on Weight and Waist Size

c-di-GMP Boosts TLR4-Adjuvanted TB Vaccine Efficacy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.