• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sustainable and green development of magnesium production technology: an environmental and economic life-cycle perspective

Bioengineer by Bioengineer
October 31, 2023
in Chemistry
Reading Time: 3 mins read
0
Magnesium Production Processess Cup Rally Championship
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Magnesium, the lightest metallic structural material, has been referred to as the most promising material for green engineering in the 21st century. Currently, magnesium finds extensive application in various sectors, including automotive manufacturing, railway transportation, 3C consumer electronics, aerospace production, and within prominent companies like Tesla and Apple.

Magnesium Production Processess Cup Rally Championship

Credit: Xiaorui Huang, et al

Magnesium, the lightest metallic structural material, has been referred to as the most promising material for green engineering in the 21st century. Currently, magnesium finds extensive application in various sectors, including automotive manufacturing, railway transportation, 3C consumer electronics, aerospace production, and within prominent companies like Tesla and Apple.

In China, nearly all magnesium produced is done via the Pidgeon process. which involves the thermal reduction of calcined dolomite with ferrosilicon. Due to its inherent characteristics, however, this method generates large amounts of greenhouse gases (GHG) along with high consumption of fossil fuels.

To address this limitation, a team of researchers in China conducted a life cycle assessment (LCA) to investigate the energy consumption and GHG emissions associated with the Pidgeon process and five other alternative methods.

“We conducted the study at Fugu County, China’s largest magnesium production site. We developed a cradle-to-gate life cycle model for Fugu magnesium, leveraging local technical processes and production data. This approach allows us to gain clear insights into the key factors for conserving energy and reducing carbon emissions within magnesium production,” shared the study’s first author, Xiaorui Huang, a PhD student at the Shenyang University of Chemical Technology.

Notably, the energy consumption and GHG emissions data for the current Pidgeon process in Fugu were recently updated, with figures of 6.38×105 MJ and 39.3 t CO2-eq., respectively.

“These figures are derived from the Chinese database and accurately portray the current state of domestic magnesium production technology. They hold substantial importance in establishing the initial carbon quota for the domestic magnesium industry,” explained Mr. Huang.

The researchers also noted that a new magnesium production technology using Liaoning’s abandoned magnesite as raw material and the coke oven gas from steelworks as fuel showed the best economic performance in terms of cost for greenhouse gas emissions.

Their findings are published in the KeAi journal Carbon Resources Conversion.

“We hope our work would provide useful insights for the sustainable development of magnesium industries and the proper route selection under the carbon peaking and carbon neutrality goals of China,” said Mr. Huang.

###

Contact the author:Xiaorui Huang, Shenyang University of Chemical Technology, [email protected]

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Carbon Resources Conversion

DOI

10.1016/j.crcon.2023.10.002

Method of Research

Case study

Subject of Research

Not applicable

Article Title

A life cycle analysis on magnesium production processes: Energy consumption, carbon emission and economics

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Enhance CO2-to-Fuel Conversion Efficiency Fivefold by Tuning Nanowire “Tension”

Researchers Enhance CO2-to-Fuel Conversion Efficiency Fivefold by Tuning Nanowire “Tension”

September 18, 2025
Multi-Label Classification Algorithm Tackles the Challenge of One-Dimensional Strong Correlation

Multi-Label Classification Algorithm Tackles the Challenge of One-Dimensional Strong Correlation

September 18, 2025

Precise 1,3-Hydrofunctionalization of Trisubstituted Alkenes

September 18, 2025

Cobalt-Free PSFNRu Nanocomposites Assembled In Situ as Bifunctional Electrodes for Direct Ammonia Symmetric Solid Oxide Fuel Cells

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

On-Chip Cavities Harness Topological Edge States

AI and X-Ray Simplify Achalasia Diagnosis

JNK Kinase Controls HCoV-229E Nucleocapsid Phosphorylation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.