• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese scientists use custom genome assembly and editing method to improve sheepgrass

Bioengineer by Bioengineer
October 25, 2023
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Dr. CAO Xiaofeng at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences has improved biomass-related traits in sheepgrass using its own custom genome editing system while increasing understanding of sheepgrass genomics.

Morphological view and genomic profile of forage Sheepgrass

Credit: IGDB

A research team led by Dr. CAO Xiaofeng at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences has improved biomass-related traits in sheepgrass using its own custom genome editing system while increasing understanding of sheepgrass genomics.

The team’s excellent genome assembly and innovative gene editing system, characterized by the fusion of big data and biotechnology, reveals the potential for intelligent and rapid genomic breeding of sheepgrass.

The study was published in PNAS on Oct. 24.

Leymus chinensis (sheepgrass), a member of the Triticeae family, is a prominent grass species throughout the Eurasian steppe. This species, which is known for its robust rhizomes, has impressive attributes such as frost tolerance, drought tolerance, salt tolerance, and good soil stabilization capacity, etc. Sheepgrass is widely recognized as a high quality forage that provides both ecological and economic benefits due to its exceptional nutritional value and palatability. However, due to the sheepgrass genome’s large size and high heterozygosity, studying it and elucidating its outstanding properties is challenging.

In this study, the researchers selected L. chinensis Lc6-5, a type of sheepgrass from the grasslands of Northeast China with strong rhizomes. They performed genome assembly using cutting-edge sequencing and assembly techniques. The assembled genome size was approximately eight Gb, with a contig N50 of more than 300 Mb and repetitive sequences accounting for 87.76% of the genome.

Given the remarkable heterozygosity of the genome, the researchers also performed a haplotype-level assembly. These results serve as an invaluable genomic resource for future research efforts.

Subsequently, the researchers used the custom CRISPR/Cas9 editing system on Lc6-5 to conduct a knockout of microRNA MIR528, which resulted in a significant increase in tiller number and plant growth rate.

The assembled sheepgrass genome, coupled with the genome editing system developed by the research team, opens the door to improving the biomass of L. chinensis and establishes a precedent for its rapid genetic improvement and for genome-based breeding.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2308984120

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe

Article Publication Date

24-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Genomic Analysis Uncovers Ningxia Jingyuan Chicken Genetics

Genomic Analysis Uncovers Ningxia Jingyuan Chicken Genetics

August 26, 2025
Key Genes Drive Organic Acid Accumulation in Cherry

Key Genes Drive Organic Acid Accumulation in Cherry

August 25, 2025

Introducing a Breakthrough Tool to Monitor Infant Development Beginning at Just 16 Days Old

August 25, 2025

Genetic Diversity in Nile Tilapia: A Conservation Review

August 25, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune Profiling Advances Transform Cancer Treatment Approaches

Neochebulinic Acid from Terminalia Chebula Fights Helicobacter pylori

Novel Stress-Release Technique Enables Flexible Al2O3 OLED Films

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.