• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Single model predicts trends in employment, microbiomes, forests

Bioengineer by Bioengineer
October 25, 2023
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAMPAIGN, Ill. — Researchers report that a single, simplified model can predict population fluctuations in three unrelated realms: urban employment, human gut microbiomes and tropical forests. The model will help economists, ecologists, public health authorities and others predict and respond to variability in multiple domains, the researchers say.

Portrait of James O'Dwyer

Credit: Photo by Michelle Hassel

CHAMPAIGN, Ill. — Researchers report that a single, simplified model can predict population fluctuations in three unrelated realms: urban employment, human gut microbiomes and tropical forests. The model will help economists, ecologists, public health authorities and others predict and respond to variability in multiple domains, the researchers say.

The new findings are detailed in the Proceedings of the National Academy of Sciences.

The model, which goes by the acronym SLRM, does not predict exact outcomes, but generates a narrow distribution of the most likely trajectories, said James O’Dwyer, a professor of plant biology at the University of Illinois Urbana-Champaign who developed the model with postdoctoral researcher Ashish George in the Carl R. Woese Institute for Genomic Biology at the U. of I. George is now a computational scientist at the Broad Institute in Cambridge, Massachusetts.

“The model incorporates random events, so it predicts a range of outcomes. But the data fall right in the middle of that range of outcomes,” O’Dwyer said.

The model divides each population into discrete sectors – for example job types such as healthcare, agriculture or retail trade – and assigns a “generation time” to each.

“Generation time is the lifetime of a tree or microbe, or the time a person spends in a given employment sector,” George said. “It is measured in hours for microbes, years for job types, and decades for forests.” Analyzing the systems in terms of generation time for each sector revealed similarities in how all three systems behave.

The scientists relied on decades of research tracking changes in each of the different domains over time. For the employment analysis, they focused on the number of people employed in different economic sectors over time. This data came from the North American Industry Classification System and included monthly updates for 383 U.S. cities over a period of 17 years.

The forest data came from a study that tracked tree and shrub species every five years for two decades in a 123-acre plot on Barro Colorado Island in Panama. And the microbiome data was from a study measuring the relative abundance of hundreds of microbial species in the human gut every day for more than a year.

“For each ‘species’ in each system, we analyzed the trajectory of relative abundances across numerous time points to estimate three quantities:  an equilibrium abundance, how long it takes for a trajectory to return to equilibrium after a perturbation, and a strength of stochasticity,” George said. “The stochasticity incorporated into the model accounts for the random events that generate fluctuations away from or back toward equilibrium.”

“We found a good description of the majority of the data with this model,” O’Dwyer said. “Simple as it is, we compared it with some other alternative models, and it performed better. Our model describes the patterns of fluctuations very well.”

“The simplicity of the model allows it to be applicable across both biological and social realms,” O’Dwyer said. “It can predict changes in abundance, but it cannot describe the exact cause of those fluctuations.”

Understanding the detailed mechanisms that generate the fluctuations would need in-depth, system-specific analyses, he said.

“This is the first effort to unify predictions for fluctuations across these domains using the same model,” George said. “This advance will not only aid in developing new prediction methods in each system, but also motivate the cross-pollination of concepts and techniques across these seemingly disparate fields.”

 

Editor’s notes: 

To reach Ashish George, email ashish.b.george@gmail.com.

To reach James O’Dwyer, email jodwyer@illinois.edu.

The paper “Universal abundance fluctuations across microbial communities, tropical forests, and urban populations” is available online or from the U. of I. News Bureau.

DOI: 10.1073/pnas.2215832120



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2215832120

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

Universal abundance fluctuations across microbial communities, tropical forests, and urban populations

Article Publication Date

24-Oct-2023

COI Statement

No conflict of interest declared

Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.