• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Adding crushed rock to farmland pulls carbon out of the air

Bioengineer by Bioengineer
October 24, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Adding crushed volcanic rock to cropland could play a key role in removing carbon from the air. In a field study, scientists at the University of California, Davis, and Cornell University found the technology stored carbon in the soil even during an extreme drought in California. The study was published in the journal Environmental Research Communications.

Crushed Rock on Farmland

Credit: Amy Quinton/UC Davis

Adding crushed volcanic rock to cropland could play a key role in removing carbon from the air. In a field study, scientists at the University of California, Davis, and Cornell University found the technology stored carbon in the soil even during an extreme drought in California. The study was published in the journal Environmental Research Communications.

Rain captures carbon dioxide from the air as it falls and reacts with volcanic rock to lock up carbon. The process, called rock weathering, can take millions of years — too slow to offset global warming. But by crushing the rock into a fine dust, rock weathering speeds up. Previous studies have estimated this “enhanced” rock weathering could store 215 billion tons of carbon dioxide over the next 75 years if spread across croplands globally.

But until now the technology hasn’t been field-tested in dry climates.

“These reactions require water,” said lead author Iris Holzer, a doctoral candidate in soils and biogeochemistry in the Department of Land, Air and Water Resources at UC Davis. “Since we’re interested in the global carbon storage potential of enhanced weathering, we need to understand if it can work in these drier climates and if different measurement approaches are effective. We were excited to observe carbon removal in this environment.”

California as a test case for storing carbon

Researchers applied crushed rock, both metabasalt and olivine, on 5 acres of a fallowed cornfield in the Sacramento Valley. They collected measurements during the winter months of 2020-2021. California was experiencing extreme drought at the time, with rainfall at 41% of its historical average.

The study found the plots with crushed rock stored 0.15 tons of carbon dioxide per hectare (2.47 acres) during the study compared to plots without crushed rock. Though researchers expect different weathering rates in different environments, if this amount of carbon was removed across all California cropland, it would be equivalent to taking 350,000 cars off the road every year.

“We’re definitely seeing evidence of weathering processes taking place on short time scales,” said Holzer. “Even the infrequent heavy rains we get in the West might be enough to drive enhanced rock weathering and remove carbon dioxide.”

Holzer said measuring and verifying that carbon storage at larger scales and following it over time is the next challenge.

Forty-one percent of Earth’s land surface is covered by drylands that are expanding due to climate change. Researchers said this makes investigating enhanced rock weathering in drylands increasingly important.

“When it comes to bending the global carbon curve, we are in a race against time,” said senior author Benjamin Z. Houlton, Ronald P. Lynch Dean of the Cornell University College of Agriculture and Life Sciences. “Our study demonstrates a new way to verify carbon dioxide removal via enhanced weathering, which is a critical leap forward for scaling this technology in croplands worldwide.”

Other authors include Mallika Nocco, in the Department of Land, Air and Water Resources at UC Davis.

The research, part of the Working Lands Innovation Center, was funded by the California Strategic Growth Council and the Grantham Foundation, Roger Sant and Doris Matsui. Aggregates and mining company, SGI, a Standard Industries company, donated the crushed metabasalt rock from its site in Ione, California.



Journal

Environmental Research Communications

DOI

10.1088/2515-7620/acfd89

Subject of Research

Not applicable

Article Title

Direct evidence for atmospheric carbon dioxide removal via enhanced weathering in cropland soil

Article Publication Date

18-Oct-2023

COI Statement

Authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weather’s Impact on Anopheles Mosquito Populations in Lagos

Ghost Spider’s Maternal Care vs. New Fly Species

DWI-Guided vs. MRI-Based IMRT in Head & Neck

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.