• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Generating clean electricity with chicken feathers

Bioengineer by Bioengineer
October 20, 2023
in Chemistry
Reading Time: 3 mins read
0
A sustainable membrane is produced from the keratin in chicken feathers for use in a fuel cell.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The food industry generates enormous amounts of waste and by-​products, including from poultry production. Each year, some 40 million tonnes of chicken feathers are incinerated. This not only releases large amounts of CO2, but also produces toxic gases such as sulphur dioxide.

A sustainable membrane is produced from the keratin in chicken feathers for use in a fuel cell.

Credit: Graphic: ETH Zurich / NTU

The food industry generates enormous amounts of waste and by-​products, including from poultry production. Each year, some 40 million tonnes of chicken feathers are incinerated. This not only releases large amounts of CO2, but also produces toxic gases such as sulphur dioxide.

Researchers at ETH Zurich and Nanyang Technological University Singapore (NTU) have now found a way to put these feathers to good use. Using a simple and environmentally friendly process, they extract the protein keratin from the feathers and convert it into ultra-​fine fibres known as amyloid fibrils. These keratin fibrils go on to be used in the membrane of a fuel cell.

Fuel cells generate CO2-​free electricity from hydrogen and oxygen, releasing only heat and water. They could play an important role as a sustainable energy source in the future. At the heart of every fuel cell lies a semipermeable membrane. It allows protons to pass through but blocks electrons, forcing them to flow through an external circuit from the negatively charged anode to the positively charged cathode, thereby producing an electric current.

Making good use of industrial waste

In conventional fuel cells, these membranes have so far been made using highly toxic chemicals, or “forever chemicals”, which are expensive and don’t break down in the environment. The membrane developed by the ETH and NTU researchers, on the other hand, consists mainly of biological keratin, which is environmentally compatible and available in large quantities – chicken feathers are 90 percent keratin. This means the membrane manufactured in the laboratory is already up to three times cheaper than conventional membranes.

“I’ve devoted a number of years to researching different ways we can use food waste for renewable energy systems,” says Raffaele Mezzenga, Professor of Food and Soft Materials at ETH Zurich. “Our latest development closes a cycle: we’re taking a substance that releases CO2 and toxic gases when burned and used it in a different setting: with our new technology it not only replaces toxic substances, but also prevents the release of CO2, decreasing the overall carbon footprint cycle”, Mezzenga says.

Versatile application

However, there are further challenges to overcome before hydrogen can become established as a sustainable energy source. “Hydrogen is the most abundant element in the universe – just unfortunately not on Earth,” Mezzenga says. Since hydrogen doesn’t occur here in its pure form, it has to be produced, which requires a great deal of energy. Here, too, the new membrane could serve well in the future, because it can be used not only in fuel cells but also in water splitting.

In a process known as electrolysis, direct current is passed through water, causing oxygen to form at the (this time) positively charged anode, while hydrogen escapes at the negatively charged cathode. Pure water isn’t conductive enough for this process and often requires the addition of acids. The new membrane, however, is permeable to protons and thus enables the particle migration between anode and cathode necessary for efficient water splitting, even in pure water.

Patent pending

The researchers’ next step will be to investigate how stable and durable their keratin membrane is, and to improve it if necessary. The research team has already filed a joint patent for the membrane and is now looking for investors or companies to develop the technology further and bring it to market. . 



Journal

Interfaces

DOI

10.1021/acsami.3c10218

Article Title

Renewable Energy from Livestock Waste Valorization: Amyloid-Based Feather Keratin Fuel Cells

Article Publication Date

26-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.