• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Transforming wastewater into valuable chemicals with sunlight

Bioengineer by Bioengineer
October 16, 2023
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers led by Prof. GAO Xiang from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences and Prof. LU Lu from the Harbin Institute of Technology have proposed a novel method to transform wastewater contaminants into valuable chemicals using sunlight, thus paving the way for sustainable and eco-friendly chemical manufacturing.

Green chemical manufacturing makes a greener life

Credit: SIAT

Researchers led by Prof. GAO Xiang from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences and Prof. LU Lu from the Harbin Institute of Technology have proposed a novel method to transform wastewater contaminants into valuable chemicals using sunlight, thus paving the way for sustainable and eco-friendly chemical manufacturing.

The study was published in Nature Sustainability on Oct. 16.

Conventional chemical manufacturing relies on energy-intensive processes. Semiconductor biohybrids, integrating efficient light-harvesting materials with superior living cells, have emerged as an exciting advancement in utilizing solar energy for chemical production. However, the challenge lies in finding an economically viable and environmentally friendly approach to scale up this technology.

In this study, the researchers set out to convert pollutants from wastewater into semiconductor biohybrids directly in the wastewater environment. The concept involves utilizing the organic carbon, heavy metals, and sulfate compounds present in wastewater as the raw materials for constructing these biohybrids, and subsequently converting them into valuable chemicals.

Nevertheless, real industrial wastewater usually varies in its composition of major organic pollutants, heavy metals, and complex pollutants, all of which are often toxic to bacterial cells and difficult for them to metabolize efficiently. It also contains high levels of salt and dissolved oxygen that require bacteria with an aerobic sulfate reduction capacity. Thus, it’s challenging to use wastewater as bacteria feedstock.

To overcome this, the researchers selected a fast-growing marine bacterium, Vibrio natriegens, which has exceptional tolerance for high salt concentration and a capacity for utilizing various carbon sources. They introduced an aerobic sulfate reduction pathway into V. natriegens and trained the engineered strain to utilize different metal and carbon sources in order to produce semiconductor biohybrids directly from such wastewater.

Their primary target chemical for production was 2,3-butanediol (BDO), a valuable commodity chemical.

By engineering a strain of V. natriegens, they generated hydrogen sulfide, which played a pivotal role in facilitating the production of CdS nanoparticles that efficiently absorb light. These nanoparticles, renowned for their biocompatibility, enabled the in-situ creation of semiconductor biohybrids and enabled the non-photosynthetic bacteria to utilize light.

The results showed that these sunlight-activated biohybrids exhibited significantly enhanced BDO production, surpassing yields achievable through bacterial cells alone. Furthermore, the process displayed scalability, achieving solar-driven BDO production on a substantial 5-liter scale using actual wastewater.

“The biohybrid platform not only boasts a lower carbon footprint but also reduces product costs, leading to an overall smaller environmental impact when compared to both traditional bacterial fermentation and fossil fuel-based BDO production methods,” said Prof. GAO. “Remarkably, these biohybrids could be produced using a variety of wastewater sources.”



Journal

Nature Sustainability

DOI

10.1038/s41893-023-01233-2

Article Title

Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids

Article Publication Date

16-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.