• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

DNA aptamer finds novel application in regulating cell differentiation

Bioengineer by Bioengineer
October 10, 2023
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Generating specific cell lineages from induced pluripotent stem cells and embryonic stem cells is the holy grail of regenerative medicine. Guiding iPSCs toward a target cell line has garnered much attention, but the process remains challenging. Now, researchers from Japan have discovered that an anti-nucleolin DNA aptamer, iSN04, can determine a cell’s lineage during differentiation. By demonstrating the generation of cardiomyocytes from murine pluripotent stem cells, their concept shows promise as a regenerative therapy.

A model showing myogenetic oligodeoxynucleotide’s (iSN04) effect on pluripotent stem cell differentiation

Credit: Tomohide Takaya from Shinshu University, Japan (https://www.mdpi.com/1422-0067/24/18/14380)

Generating specific cell lineages from induced pluripotent stem cells and embryonic stem cells is the holy grail of regenerative medicine. Guiding iPSCs toward a target cell line has garnered much attention, but the process remains challenging. Now, researchers from Japan have discovered that an anti-nucleolin DNA aptamer, iSN04, can determine a cell’s lineage during differentiation. By demonstrating the generation of cardiomyocytes from murine pluripotent stem cells, their concept shows promise as a regenerative therapy.

 

Self-renewal and pluripotency–the capacity to form any cell lineage–are inherent characteristics of induced pluripotent stem cells (iPSCs). Furthermore, they are highly prized in regenerative therapies targeting cardiovascular, neurological, and metabolic diseases as they are immunologically suitable for transplantation back into a donor. Unfortunately, regenerative medicine is not yet feasible outside a laboratory setting as available protocols to generate target cells are complicated and expensive. This raises a pertinent question: Can regulating the fate of stem cells in clinical settings and at scale be made more economical?

A team of researchers from Shinshu University, the National Institute of Advanced Industrial Science and Technology, and the University of Shizuoka in Japan set out to address this question by leveraging nucleic acid aptamers. Aptamers are single-stranded pieces of DNA that bind to target proteins and are able to modulate signaling cascades during cell differentiation when a stem cell commits to a specific functional role or phenotype. They hold promise in regenerative medicine as they are easily modified, can be synthesized economically, and are suitable for long-term storage.

The team, led by Associate Professor Tomohide Takaya from the Department of Agricultural and Life Sciences at Shinshu University, recently discovered that an anti-nucleolin aptamer, myogenetic oligodeoxynucleotide iSN04, induced myocardial differentiation in embryonic stem cells (ESCs). The study was led by Mina Ishioka, a graduate student in Dr. Takaya’s laboratory, and published in The International Journal of Molecular Sciences on 21 September 2023.

“We had previously found that iSN04 promoted myogenic precursor cells (myoblasts) to differentiate into skeletal muscle cells and had hypothesized that the aptamer also enhanced differentiation of pluripotent stem cells. We were intrigued by the prospect of using iSN04 to promote iPSC differentiation into cardiomyocytes as this could lead to regenerating heart tissue,” says Dr. Takaya, elaborating on the team’s motivation to pursue the research.

Using various assays like RNA sequencing, cell staining and imaging, and molecular interaction and pathway analysis, the researchers investigated iSN04’s effect on murine ESCs and iPSCs. iSN04 treatment under differentiating conditions inhibited stem cell commitment to the cardiac lineage. However, when these pluripotent stem cells were treated after experiencing differentiating conditions for five days, specific marker genes were upregulated, and the cells committed to forming beating cardiomyocytes.

“Ours is the first report to confirm a DNA aptamer that allows cardiomyocytes to develop from iPSCs,” explains Dr. Takaya when asked about the significance of the work. “We uncovered two mechanisms of nucleolin interference with iSN04 at play whereby early treatment inhibits cardiomyogenesis, while treatment at a later stage enhances the generation of cardiac progenitors. First, iSN04 governs the translocation of nucleolin protein between the cytoplasm, plasma membrane, and nucleus. Second, it results in the modulation of the Wnt signaling pathway that governs cell differentiation.”

The immunostaining experiments revealed that nucleolin was retained in the nucleoli following iSN04 treatment. Nucleolar nucleolin has a role in chromatin remodeling and gene transcription, and interestingly enough, Wnt pathway genes were differentially expressed in the RNA-seq data following iSN04 suppression. The team postulates that the iSN04-anchored nucleolin alters gene expression and Wnt signaling. Ultimately, terminal cell differentiation commits to the cardiomyocyte lineage.

And how could these findings impact regenerative medicine and patients’ lives in the long term? Dr. Takaya provides insights into the broader implications of their work. “We believe there is a strong case to be made for further studies evaluating DNA aptamers in regenerative medicine. Aptamers are cost-effective and open up the possibility of producing specific cells from the patient’s stem cells. But it doesn’t end there! Since the aptamers can regulate stem cell fate, they can serve as therapeutic agents for many conditions linked to stem cell dysfunction,” he concludes.

 

 

                                                        # # #

 

About Shinshu University

Shinshu University is a national university founded in 1949 located nestling under the Japanese Alps in Nagano known for its stunning natural landscapes. Our motto, “Powered by Nature – strengthening our network with society and applying nature to create innovative solutions for a better tomorrow” reflects the mission of fostering promising creative professionals and deepening the collaborative relationship with local communities, which leads up to our contribution to regional development by innovation in various fields. We’re working on providing solutions for building sustainable society through interdisciplinary research fields: material science (carbon, fiber and composites), biomedical science (for intractable diseases and preventive medicine) and mountain science, and aiming to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information and latest news visit our Website or follow us @ShinshuUni on X.

 

About Associate Professor Tomohide Takaya

Dr. Tomohide Takaya earned his Ph.D. in Medical Science from Kyoto University in 2011. He is currently an Associate Professor in the Department of Agriculture, Graduate School of Science and Technology at Shinshu University, Japan, and has been associated with the Faculty of Agriculture since 2015. He researches topics on skeletal muscle, bone, obesity/diabetes, arteriosclerosis, and heart disease with hopes of improving human health and longevity.

 



Journal

International Journal of Molecular Sciences

DOI

10.3390/ijms241814380

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells

Article Publication Date

21-Sep-2023

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Microhaplotype Panel Advances Brazilian Human Identification

August 22, 2025
blank

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

August 22, 2025

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

August 22, 2025

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microhaplotype Panel Advances Brazilian Human Identification

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.