• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New tool reveals how drugs affect men, women differently — and will make for safer medications

Bioengineer by Bioengineer
October 2, 2023
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UVA Health researchers have developed a powerful new tool to understand how medications affect men and women differently, and that will help lead to safer, more effective drugs in the future.

New tool reveals how drugs affect men, women differently

Credit: Dan Addison | UVA Communications

UVA Health researchers have developed a powerful new tool to understand how medications affect men and women differently, and that will help lead to safer, more effective drugs in the future.

Women are known to suffer a disproportionate number of liver problems from medications. At the same time, they are typically underrepresented in drug testing. To address this, the UVA scientists have developed sophisticated computer simulations of male and female livers and used them to reveal sex-specific differences in how the tissues are affected by drugs.

The new model has already provided unprecedented insights into the biological processes that take place in the liver, the organ responsible for detoxifying the body, in both men and women. But the model also represents a powerful new tool for drug development, helping ensure that new medications will not cause harmful side effects.

“There are incredibly complex networks of genes and proteins that control how cells respond to drugs,” said UVA researcher Jason Papin, PhD, one of the model’s creators. “We knew that a computer model would be required to try to answer these important clinical questions, and we’re hopeful these models will continue to provide insights that can improve healthcare.”

Harmful Effects From Drugs

Papin, of UVA’s Department of Biomedical Engineering, developed the model in collaboration with Connor Moore, a PhD student, and Christopher Holstege, MD, a UVA emergency medicine physician and director of UVA Health’s Blue Ridge Poison Center. “It is exceedingly important that both men and women receive the appropriate dose of recommended medications,” Holstege noted. “Drug therapy is complex and toxicity can occur with subtle changes in dose for specific individuals.”

Before developing their model, the researchers first looked at the federal Food and Drug Administration’s Adverse Event Reporing System to evaluate the frequency of reported liver problems in men and women. The scientists found that women consistently reported liver-related adverse events more often than did men.

The researchers then sought to explain why this might be the case. To do that, they developed computer models of the male and female livers that integrated vast amounts of data on gene activity and metabolic processes within cells. These cutting-edge liver simulations provided important insights into how drugs affect the tissue differently in men and women and allowed the researchers to understand why.

“We were surprised how many differences we found, especially in very diverse biochemical pathways,” said Moore, a biomedical engineering student in Papin’s lab. “We hope our results emphasize how important it is for future scientists to consider how both men and women are affected by their research.”

The work has already identified a key series of cellular processes that explain sex differences in liver damage, and the scientists are calling for more investigation of it to better understand “hepatotoxicity” – liver toxicity. Ultimately, they hope their model will prove widely useful in developing safer drugs. 

“We’re hopeful these approaches will be help address many other questions where men and women have differences in drug responses or disease processes,” Papin said. “Our ability to build predictive computer models of complex systems in biology, like those in this study, is truly opening all kinds of new avenues for tackling some of the most challenging biomedical problems.”

Findings Published

The researchers have published their findings in the scientific journal PLOS Computational Biology. The article is open access, meaning it is free to read. The UVA researchers have no financial interest in the work.

The research was supported by the National Institutes of Health, grants R01-DK132369 and T32-GM145443.

UVA’s Department of Biomedical Engineering is a joint program of the School of Medicine and the School of Engineering and Applied Science.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog.



DOI

10.1371/journal.pcbi.1010927

Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.