• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Insights into early snake evolution through brain analysis

Bioengineer by Bioengineer
September 29, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent study sheds new light on the enigmatic early evolution of snakes by examining an unexpected source: their brains. The results emphasise the significance of studying both the soft parts of animals’ bodies and their bones for understanding how animals evolved.

Lifestyle and brain reconstructions of the hypothetical ancestor of modern snakes.

Credit: Simone Macrì and Nicolas Di-Poï.

Recent study sheds new light on the enigmatic early evolution of snakes by examining an unexpected source: their brains. The results emphasise the significance of studying both the soft parts of animals’ bodies and their bones for understanding how animals evolved.

Snakes are fascinating creatures, forming about one-eighth of vertebrate animals found on land. They come in a wide range of forms and sizes and have adjusted to different ways of life, such as living underground, on the land, in water, and up in trees. However, the early evolution of snakes and the changes in their morphologies over time has been long debated in the field of biology.

To help unravel this mystery, researchers from the HiLIFE Institute of Biotechnology, University of Helsinki used a different way of studying snake evolution.

“Instead of relying on rare, old fossil remains to learn about the history of snakes, we looked at the brains of living reptiles and traveled back in time, thanks to modern imaging and analysis tools” says the first author of the study, Postdoctoral Researcher Simone Macrì.

By using high-definition 3D models of modern lizard and snake brains, researchers reconstructed the brain shape of early snakes and discovered that they were fully adapted for underground living. Nevertheless, early snakes also displayed versatile behaviors, as evidenced by the mixture of different features and complex patterns in their brain morphologies, which may reflect differences in what they eat, how they use different environments both below and above the ground, and their ability to search for food.

Understanding animal evolution beyond fossils

“What’s really exciting is that this study is not only about snakes! It’s also showing us a way to learn about other animals whose history is a bit of a mystery because we lack fossils for studying them”, describes Principal Investigator Nicolas Di-Poï, Research Director at the Institute of Biotechnology, University of Helsinki.

By examining both present-day animals and those from the past, along with bones and different crucial organs like the brain, scientists can piece together the story of how these creatures changed and evolved over time.

This research underscores a vital lesson for the field of biology: unraveling the mysteries of animal evolution goes beyond the analysis of bone remains. To comprehend the transformation of creatures like snakes over time, scientists must consider other components of their bodies, including soft tissues and internal organs. This is particularly crucial when studying animals from eras when their bones might not have been well-preserved.

 



Journal

Science Advances

DOI

10.1126/sciadv.adi6888

Method of Research

Computational simulation/modeling

Subject of Research

Animals

Article Title

Reconstructing the origin and early evolution of the snake brain

Article Publication Date

27-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metabolomics Reveals Meat Quality in Dolang Sheep

August 29, 2025
blank

Unlocking Diagnostic Markers for Myocardial Infarction

August 29, 2025

Orangutans Master Bed-Building Through Observation and Practice, Study Finds

August 29, 2025

Atrazine Causes Intestinal Damage in African Catfish

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Inverse Kinematics Tool for Motion Capture

SPI1 Enhances TXNRD1 to Shield Trophoblasts from Ferroptosis

Impact of Non-Insulin Diabetes Medications on Complications

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.