• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Watch how hammerhead sharks get their hammer

Bioengineer by Bioengineer
September 28, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For weeks, you’d be hard pressed to tell if the rapidly growing animal was going to become a chicken, a fish, a frog, or even a human.

Hammerhead development

Credit: Gareth Fraser

For weeks, you’d be hard pressed to tell if the rapidly growing animal was going to become a chicken, a fish, a frog, or even a human.

Then out of nowhere: the hammer.

In an unprecedented look at perhaps the strangest, most captivating animals in the ocean, University of Florida scientists have documented how hammerhead sharks stretch and distort their skulls into their namesake hammer-like shape.

“This is a look at how monsters form,” said Gareth Fraser, a UF professor of biology who supervised the new study. “This is an insight into the development of a wonder of nature that we haven’t seen before and may not be able to see again.”

In a series of striking pictures, the study reveals how, roughly halfway through gestation, two-inch-long bonnethead shark embryos suddenly widen their heads. The growing skull pushes out their still-growing eyes at unnatural-looking angles. In the following weeks, the front of the hammer rounds out as it pushes backward toward the gills, creating the final shovel-like shape.

A couple months later, the fully-formed, foot-long shark is born.

Fraser and his graduate student Steven Byrum led the work to document in careful detail the development of bonnetheads, the smallest hammerhead shark species. Bonnetheads are abundant in the Gulf of Mexico and the Atlantic Ocean and spend time near shore, making them relatively easy to study.

But this detailed look at hammerhead development had previously escaped scientists. Most fish, and many sharks, lay eggs that can be easily collected and examined back at the lab. Hammerheads give birth to live young, which makes it exceedingly difficult to watch embryos develop. Many species are endangered, prohibiting the harvesting of sharks to study their young.

Fraser’s team made the most of existing specimens. Through their collaborators, they gained access to embryos that were preserved from bonnetheads caught during other biological studies. No additional sharks were harmed to complete the study.

Because of the difficulty of studying hammerheads, the scientists say that such a close look at their development may never happen again.

“It’s the perfect qualities of the bonnethead that allowed us do it with this species,” said Byrum. “This was a unique opportunity we may not be able to get for very much longer with bonnetheads and may not be able to get in any other species of hammerhead.”

Byrum and Fraser worked with Gavin Naylor, director of the Florida Program for Shark Research at the Florida Museum of Natural History, and scientists from the South Carolina Department of Natural Resources and Florida State University to publish their findings Sept. 28 in the journal Developmental Dynamics.

The documentation sets up future experiments to determine how hammerheads control their head shape and why they evolved their unusual features, which are thought to amplify their field of vision and ability to detect electrical movements of prey.



Journal

Developmental Dynamics

DOI

10.1002/dvdy.658

Method of Research

Observational study

Subject of Research

Animals

Article Title

Embryonic development in the bonnethead (Sphyrna tiburo), a viviparous hammerhead shark

Article Publication Date

28-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Liver Kinase B1 Shields Endothelial Cells from Hypoxia

August 30, 2025

Revolutionizing Drug-Target Affinity with 3D Protein Insights

August 30, 2025

Gendered Foraging Strategies of Little Auks Revealed

August 30, 2025

Studying Social Interactions: Baleen Whales and Dolphins

August 30, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Femoral Oxygen Levels to Predict Lung Injury

From GH Deficiency to Combined Hormone Deficiency in Pediatrics

Case Study: Hypoglycemia Post-Gastric Bypass with Sacubitril/Valsartan

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.