• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Intense lasers shine new light on the electron dynamics of liquids

Bioengineer by Bioengineer
September 28, 2023
in Chemistry
Reading Time: 3 mins read
0
An intense laser pulse (in red) hits a flow of water molecules, inducing an ultrafast dynamics of the electrons in the liquid.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg and ETH Zurich has now demonstrated that it is possible to probe electron dynamics in liquids using intense laser fields and to retrieve the electron mean free path – the average distance an electron can travel before colliding with another particle. They found that the mechanism by which liquids emit a particular light spectrum known as the high-harmonic spectrum is markedly different from the one in other phases of matter like gases and solids. The team’s findings open the door to a deeper understanding of ultrafast dynamics in liquids.

An intense laser pulse (in red) hits a flow of water molecules, inducing an ultrafast dynamics of the electrons in the liquid.

Credit: Joerg M. Harms / MPSD

An international team of researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg and ETH Zurich has now demonstrated that it is possible to probe electron dynamics in liquids using intense laser fields and to retrieve the electron mean free path – the average distance an electron can travel before colliding with another particle. They found that the mechanism by which liquids emit a particular light spectrum known as the high-harmonic spectrum is markedly different from the one in other phases of matter like gases and solids. The team’s findings open the door to a deeper understanding of ultrafast dynamics in liquids.

Using intense laser fields to generate high-energy photons, known as high-harmonic generation (HHG), is a widespread technique routinely deployed in many different areas of science, for instance for probing electronic motion in materials, or tracking chemical reactions in time. HHG has been studied extensively in gases and, more recently, in crystals but to date much less is known about this phenomenon in liquids.

Now the Swiss-German research team reports in Nature Physics how it demonstrated the unique behavior of liquids when irradiated by intense lasers. So far, almost nothing is known about these light-induced processes in liquids – a stark contrast to the recent scientific progress on how solids in particular behave under irradiation. Hence the experimental team at ETH Zurich developed a unique apparatus to specifically study the interaction of liquids with intense lasers. The researchers discovered a distinctive behavior where the maximum photon energy obtained through HHG in liquids is independent of the laser’s wavelength. So which factor is responsible for this upper limit instead?

That is the question the MPSD Theory group set out to solve. Crucially, the Hamburg researchers identified a connection that had not been uncovered so far. “The distance an electron can travel in the liquid before colliding with another particle is the crucial factor which imposes a ceiling on the photon energy,” said MPSD researcher Nicolas Tancogne-Dejean, a co-author of the study. “We were able to retrieve this quantity – known as the effective electron mean free path – from the experimental data thanks to a specifically developed analytical model which accounts for the scattering of the electrons.”

 By combining the experimental and theoretical results in their study of HHG in liquids, the scientists not only pinpointed the key factor which determines the maximum photo energy, but they also performed the first experiment of high-harmonic spectroscopy in liquids. At low kinetic energy, the region probed experimentally in this study, the effective mean free path of the electrons is very hard to measure. Therefore, the work by the ETZ Zurich / MPSD team establishes HHG as a new spectroscopical tool to study liquids and is therefore an important stepping stone in the quest to understand the dynamics of electrons in liquids.



Journal

Nature Physics

DOI

10.1038/s41567-023-02214-0

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High-harmonic spectroscopy of low-energy electron-scattering dynamics in liquids

Article Publication Date

28-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

The Importance of Advancing from Chiral Molecular Macrocycles to Chiral Topological Macrocycles

September 26, 2025
Magnetized Plasma Enables Topologically Tunable Strong-Field Terahertz Pulses

Magnetized Plasma Enables Topologically Tunable Strong-Field Terahertz Pulses

September 26, 2025

Electrochemical CO2-to-Ethanol Conversion Achieved Using Ultrasmall Palladium Nanoparticles on Zirconium Phosphate

September 26, 2025

Innovative Energy-Saving Technique Transforms Water Pollutants into Valuable Ammonia

September 26, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Cincinnati Cancer Center Researcher Innovates Pancreatic Cancer Therapy Targeting Newly Discovered Protein

Hypersonic Levitation Boosts Contactless Single-Cell Analysis

AI Uncovers Hidden Features in Developing Embryo Model

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.