• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers discover disease-causing stem cells in lungs of cystic fibrosis patients

Bioengineer by Bioengineer
September 27, 2023
in Chemistry
Reading Time: 2 mins read
0
University of Houston professors Wa Xian and Frank McKeon
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two nationally recognized experts in cloning and stem cell science from the University of Houston, Wa Xian and Frank McKeon, are reporting that five lung stem cell variants dominate the lungs of patients with advanced cystic fibrosis (CF), and that these variants drive key aspects of CF pathology including inflammation, fibrosis and mucin secretion.     

University of Houston professors Wa Xian and Frank McKeon

Credit: University of Houston

Two nationally recognized experts in cloning and stem cell science from the University of Houston, Wa Xian and Frank McKeon, are reporting that five lung stem cell variants dominate the lungs of patients with advanced cystic fibrosis (CF), and that these variants drive key aspects of CF pathology including inflammation, fibrosis and mucin secretion.     

Cystic fibrosis is an inherited and progressive disease that causes long-lasting lung infections and limits the ability to breathe. It is caused by a defect in a gene called the cystic fibrosis transmembrane conductance regulator (CFTR) and affects nearly 40,000 people in the United States. Defects in the CFTR gene lead to the production of abnormally sticky and thick mucus that clogs organs, particularly lungs, causing chronic lung disease marked by infections and inflammation.   

Recently introduced drugs known as CFTR modulators act to rescue the function to the mutant CFTR gene and yield remarkable improvements in lung function of CF patients.  However, in patients with established lung disease, lung inflammation remains despite treatment with CFTR modulators. This persistence is concerning as inflammation is thought to be a key factor in the progression of CF lung disease. 

This gap in CFTR modulator efficacy renders the work of the Xian-McKeon laboratory particularly relevant.   

“Using single cell cloning technology that detailed stem cell heterogeneity in lungs from patients with COPD and idiopathic pulmonary fibrosis (IPF), we identified five stem cell variants common to lungs of patients with advanced CF, including three that show hyperinflammatory gene expression profiles and drive neutrophilic inflammation upon xenografting to immunodeficient mice,” said Xian, research professor in biology and biochemistry. 

“We found that CFTR-modulating drugs did not suppress the proinflammatory activity or gene expression of the three CF variants that drive inflammation,” reports McKeon, professor of biology and biochemistry and director of the Stem Cell Center, in the American Journal of Respiratory and Critical Care Medicine. “These findings raise the possibility that these inflammatory stem cell variants are the source of the persistent inflammation in patients treated with CFTR modulators.” 

If true, their findings suggest that the inflammatory stem cell variants are key targets for drug discovery to augment the major therapeutic advances brought by CFTR modulators. Identifying such lead drugs is a major effort in the Xian-McKeon laboratory, in collaboration with the Center for Drug Discovery, the UH Sequencing Center and colleagues in the Department of Chemistry and the Center for Biotechnology at Texas A&M in the Texas Medical Center.  



Journal

American Journal of Respiratory and Critical Care Medicine

Article Title

Inflammatory Activity of Epithelial Stem Cell Variants from Cystic Fibrosis Lung Is Not Resolved by CFTR Modulators

Article Publication Date

11-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Didn’t catch the live session? Watch the full recording now!

Didn’t catch the live session? Watch the full recording now!

November 12, 2025
Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

November 11, 2025

Revolutionary Laser Cooling Achieved: Stable Molecule Trapped Using Deep Ultraviolet Light

November 11, 2025

Breakthrough Oligomer-Based Organic Photodetector Achieves Peak Photoresponse at 1200 nm

November 11, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lesser Omental Panniculitis: An Acute Abdomen Case

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

Innovative Methods for Extracting Feather Keratin

iv>

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.