• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Topological materials open a new pathway for exploring spin hall materials

Bioengineer by Bioengineer
September 21, 2023
in Chemistry
Reading Time: 2 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A group of researchers have made a significant breakthrough which could revolutionize next-generation electronics by enabling non-volatility, large-scale integration, low power consumption, high speed, and high reliability in spintronic devices.

Figure 1

Credit: Takeshi Seki et al.

A group of researchers have made a significant breakthrough which could revolutionize next-generation electronics by enabling non-volatility, large-scale integration, low power consumption, high speed, and high reliability in spintronic devices.

Details of their findings were published in the journal Physical Review B on August 25, 2023.

Spintronic devices, represented by magnetic random access memory (MRAM), utilize the magnetization direction of ferromagnetic materials for information storage and rely on spin current, a flow of spin angular momentum, for reading and writing data.

Conventional semiconductor electronics have faced limitations in achieving these qualities.

However, the emergence of three-terminal spintronic devices, which employ separate current paths for writing and reading information, presents a solution with reduced writing errors and increased writing speed. Nevertheless, the challenge of reducing energy consumption during information writing, specifically magnetization switching, remains a critical concern.

A promising method for mitigating energy consumption during information writing is the utilization of the spin Hall effect, where spin angular momentum (spin current) flows transversely to the electric current. The challenge lies in identifying materials that exhibit a significant spin Hall effect, a task that has been clouded by a lack of clear guidelines.

“We turned our attention to a unique compound known as cobalt-tin-sulfur (Co3Sn2S2), which exhibits ferromagnetic properties at low temperatures below 177 K (-96 °C) and paramagnetic behavior at room temperature,” explains Yong-Chang Lau and Takeshi Seki, both from the Institute for Materials Research (IMR), Tohoku University and co-authors of the study. “Notably, Co3Sn2S2 is classified as a topological material and exhibits a remarkable anomalous Hall effect when it transitions to a ferromagnetic state due to its distinctive electronic structure.”

Lau, Seki and colleagues employed theoretical calculations to explore the electronic states of both ferromagnetic and paramagnetic Co3Sn2S2, revealing that electron-doping enhances the spin Hall effect. To validate this theoretical prediction, thin films of Co3Sn2S2 partially substituted with nickel (Ni) and indium (In) were synthesized. These experiments demonstrated that Co3Sn2S2 exhibited the most significant anomalous Hall effect, while (Co2Ni)Sn2S2 displayed the most substantial spin Hall effect, aligning closely with the theoretical predictions.

“We uncovered the intricate correlation between the Hall effects, providing a clear path to discovering new spin Hall materials by leveraging existing literature as a guide,” adds Seki. “This will hopefully accelerate the development of ultralow-power-consumption spintronic devices, marking a pivotal step toward the future of electronics.”



Journal

Physical Review B

DOI

10.1103/PhysRevB.108.064429

Article Title

Intercorrelated anomalous Hall and spin Hall effect in kagome-lattice Co3Sn2S2-based shandite films

Article Publication Date

25-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.