• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Warming up! 30 years of fusion-energy research at EPFL

Bioengineer by Bioengineer
September 21, 2023
in Chemistry
Reading Time: 4 mins read
0
Inside the chamber of EPFL's TCV (variable-configuration tokamak)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The intense heat and pressure inside stars, such as the Sun, cause pairs of atoms, especially hydrogen atoms, to come together or ‘fuse’. When these light nuclei merge into a heavier nucleus, some mass gets lost and is converted into a massive amount of energy, following Einstein’s famous formula, E=mc2. This fusion process is what powers stars and releases an incredible amount of energy into the universe.

Inside the chamber of EPFL's TCV (variable-configuration tokamak)

Credit: EPFL / Alain Herzog

The intense heat and pressure inside stars, such as the Sun, cause pairs of atoms, especially hydrogen atoms, to come together or ‘fuse’. When these light nuclei merge into a heavier nucleus, some mass gets lost and is converted into a massive amount of energy, following Einstein’s famous formula, E=mc2. This fusion process is what powers stars and releases an incredible amount of energy into the universe.

Scientists are already able to produce nuclear fusion reactions on Earth. The current challenge faced by researchers around the world is to sustain these fusion reactions continuously and harness the energy released in an efficient and controlled manner to generate electricity. At EPFL, the engineers have chosen to study a method that involves using a torus-shaped magnetic confinement reactor, called a tokamak. In this approach, deuterium gas, a hydrogen isotope, is heated to 100 million degrees Celsius to transform it into a plasma and induce highly energetic collisions between the deuterium nuclei. The tokamak’s magnetic fields suspend the plasma in the middle of the vacuum chamber and away from the interior wall of the device.

The Swiss Plasma Center, now with a staff of about 200 researchers and students, started up its own variable-configuration tokamak 30 years ago. Owing to its unique design, this experimental reactor has become one of the most important nuclear-fusion research facilities in Europe.

“We built the reactor even before there was the internet, and its core is still the same,” says Basil Duval, a senior scientist working on the tokamak’s measurement systems. He points out that the research being carried out at the Swiss Plasma Center is known internationally – partly because of its contribution to the International Thermonuclear Experimental Reactor (ITER) project, and partly because the findings are of value to the entire nuclear-fusion research community. “For a country the size of Switzerland to have an experimental facility of this caliber is really outstanding,” says Duval.

To commemorate the 30th anniversary of its tokamak, the Swiss Plasma will host representatives of the EUROfusion consortium in September. This consortium is behind a number of nuclear-fusion initiatives, including advancing the ITER physics basis and optimizing its chances of success via experimentation on facilities such as the TCV tokamak. Ambrogio Fasoli, director of the Swiss Plasma Center, is also the chair of EUROfusion and has just been named the consortium’s programme manager. “Our work at the Swiss Plasma Center over the past 30 years has provided key insights into plasma behavior. The TCV plays a vital role in this endeavor. Recent upgrades to its infrastructure have expanded our capability to investigate key issues for ITER, DEMO, and future fusion reactors. The challenges ahead are substantial, but we are well-positioned to make significant contributions to the development of fusion energy as a critical component of the future global energy mix,” he says.

A unique approach

Because EPFL’s tokamak is a “variable configuration” reactor, scientists can use it to observe how changes in plasma configuration affect the plasma’s properties (like temperature and confinement quality) and study new plasma configurations. It can also be used to evaluate different configurations for divertors, the devices used to control the release of energy from the reactor core. Their role is essential for being able to sustain plasma for long periods without damaging the reactor, and engineers are still working to optimize their design. The Swiss Plasma Center recently teamed up with Google DeepMind to develop a new magnetic control method for plasmas, based on deep reinforcement learning, and successfully applied it to real-world plasma configurations in the TCV tokamak for the first time.

Like all tokamaks, the EPFL’s tokamak features a vacuum chamber where gas is transformed into plasma. This chamber is encompassed by toroidal (torus-shaped) magnetic fields, created by large magnetic coils, that prevent the plasma from touching the interior wall of the chamber. Additionally, there is a central column with ohmic coils that maintain plasma stability, and a poloidal field that shapes the plasma configuration. The entire reactor is outfitted with a heating system that utilizes microwaves and hot-particle injection, complemented by a comprehensive array of instruments that measure temperature, density, radiation, fluctuations in plasma configuration, and other vital parameters.

In future fusion power plants, the heat generated by fusion reactions within the plasma will power turbines-similar to current nuclear fission reactors-and produce substantial amounts of dependable baseload electricity. This process will be sustainable and carbon-free, without generating long-lasting radioactive waste.

 

Learn more at: https://spc.epfl.ch

 



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D Gut-Brain-Vascular Model Reveals Disease Links

Low-Inflammation in Elderly UTIs: Risks and Resistance

Urinary Clusterin: Tracking Kidney Disease and Treatment Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.