• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Development of a noise barometer for measuring epigenetic pressure of aging and disease

Bioengineer by Bioengineer
September 18, 2023
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“[…] we describe a conceptually different measurement (not a prediction) of persons’ biological age, which we term a noise barometer […]”

Figure 1

Credit: 2023 Mei et al.

“[…] we describe a conceptually different measurement (not a prediction) of persons’ biological age, which we term a noise barometer […]”

BUFFALO, NY- September 18, 2023 – A new priority research paper was published on the cover of Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) Volume 15, Issue 17, entitled, “Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease.”

In this new study, researchers Xiaoyue Mei, Joshua Blanchard, Connor Luellen, Michael J. Conboy, and Irina M. Conboy from the University of California, Berkeley, show that Elastic Net (EN) DNA methylation (DNAme) clocks have low accuracy of predictions for individuals of the same age and a low resolution between healthy and disease cohorts; caveats inherent in applying linear model to non-linear processes. 

“We found that change in methylation of cytosines with age is, interestingly, not the determinant for their selection into the clocks.” 

Moreover, an EN clock’s selected cytosines change when non-clock cytosines are removed from the training data; as expected from optimization in a machine learning (ML) context, but inconsistently with the identification of health markers in a biological context. To address these limitations, the researchers moved from predictions to measurement of biological age, focusing on the cytosines that on average remain invariable in their methylation through lifespan, postulated to be homeostatically vital. They established that dysregulation of such cytosines, measured as the sums of standard deviations of their methylation values, quantifies biological noise, which in their hypothesis is a biomarker of aging and disease. 

“We term this approach a ‘noise barometer’ – the pressure of aging and disease on an organism.” 

These noise-detecting cytosines are particularly important as sums of SD on the entire 450K DNAme array data yield a random pattern through chronology. Testing how many cytosines of the 450K arrays become noisier with age, the team found that the paradigm of DNAme noise as a biomarker of aging and disease remarkably manifests in ~1/4 of the total. In that large set even the cytosines that have on average constant methylation through age show increased SDs and can be used as noise detectors of the barometer.

 

Read the full study: DOI: https://doi.org/10.18632/aging.205046 

Corresponding Author: Irina M. Conboy – iconboy@berkeley.edu 

Keywords: DNA methylation, epigenetics, aging clocks’ fail-tests, biological noise

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205046
 

About Aging:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • SoundCloud
  • Facebook
  • X, formerly known as Twitter
  • Instagram
  • YouTube
  • LabTube
  • LinkedIn
  • Reddit
  • Pinterest

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.205046

Method of Research

Experimental study

Subject of Research

People

Article Title

Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease

Article Publication Date

12-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.