• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Lab-on-a-drone’ sends science skyward to keep track of smelly air pollution

Bioengineer by Bioengineer
September 14, 2023
in Chemistry
Reading Time: 3 mins read
0
‘Lab-on-a-drone’ sends science skyward to keep track of smelly air pollution
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polluted air can contribute to the development of asthma and other conditions, and the first step toward combating its effects is continuous, accurate monitoring. Most measurement devices are stationary, placed just feet above the ground, but contaminants can drift away. Now, researchers publishing in ACS’ Analytical Chemistry have developed a “lab-on-a-drone” system that, unlike similar gadgets, can detect and analyze levels of pollutants, such as smelly hydrogen sulfide gas, all while still floating in mid-air.

‘Lab-on-a-drone’ sends science skyward to keep track of smelly air pollution

Credit: Adapted from Analytical Chemistry, 2023, DOI: 10.1021/acs.analchem.3c02719

Polluted air can contribute to the development of asthma and other conditions, and the first step toward combating its effects is continuous, accurate monitoring. Most measurement devices are stationary, placed just feet above the ground, but contaminants can drift away. Now, researchers publishing in ACS’ Analytical Chemistry have developed a “lab-on-a-drone” system that, unlike similar gadgets, can detect and analyze levels of pollutants, such as smelly hydrogen sulfide gas, all while still floating in mid-air.

Hydrogen sulfide (H2S) is one of the stinkiest air pollutants, well known for its putrid, rotten-egg odor. Though it’s naturally found in well water and volcanic emissions, it’s also a common byproduct of petroleum refineries and wastewater treatment plants. The gas is an irritant, and in high enough amounts, it can be toxic. Most methods to quantify H2S and other pollutants rely on ground-based instruments, and expensive devices such as satellites are required to collect measurements at higher altitudes. Unmanned drones have been used by researchers to gather samples in mid-air, but analyses still had to be performed on the ground with traditional instruments. So, João Flávio da Silveira Petruci and colleagues wanted to create an inexpensive “lab-on-a-drone” that could sample and analyze H2S gas while in the air and report the results in real time — a first for devices of its kind.

Using a 3D printer, the team manufactured a custom device that was mounted to the bottom of a commercially available quadcopter drone. It took advantage of a unique chemical reaction between H2S and a green-glowing fluorescein mercuric acetate molecule. When excited by an onboard blue LED light, the interaction caused a decrease in the green fluorescence intensity, which was detected and quantified. This reaction is highly selective and was not affected by other, interfering gaseous air pollutants.

The team took their drone to a wastewater treatment plant, where it sampled air on the ground, then at around 30 and 65 feet in the air at three different times throughout the day. The detection device transmitted its results via Bluetooth to a smartphone, allowing for real-time monitoring. In the evening, there was a clear increase in H2S concentration as the drone increased altitude, though it never exceeded the acceptable ambient level. The researchers say that this system could be adapted to detect other pollutants in the future.

The authors acknowledge funding from the Coordination for the Improvement of Higher Education Personnel, the Research Support Foundation of the State of Minas Gerais, and the National Council for Scientific and Technological Development.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

Analytical Chemistry

DOI

10.1021/acs.analchem.3c02719

Article Title

AirQuality Lab-on-a-Drone: A Low-Cost 3D-Printed Analytical IoT Platform for Vertical Monitoring of Gaseous H2S

Article Publication Date

6-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Small Alkali Cations Boost Hydrocarbon CO Electroreduction

January 30, 2026
Biomolecular Condensates Maintain pH Gradients via Charge Neutralization

Biomolecular Condensates Maintain pH Gradients via Charge Neutralization

January 29, 2026

Wavelength-Controlled Rotation in Light-Powered Molecular Motor

January 28, 2026

Dual-Atom Catalyst Enhances Low-Temperature Propane Combustion

January 26, 2026

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Nursing Diagnostics with Generative AI Narratives

Radiomics Predicts EGFR Response in Glioma Models

Transforming Palliative Care in Aged Care Facilities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.