• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Freshwater connectivity can transport environmental DNA through the landscape

Bioengineer by Bioengineer
September 13, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper published in the journal Proceedings of the Royal Society B used environmental DNA (eDNA) metabarcoding to analyze fish and zooplankton communities. The study found that the movement of water between freshwater bodies, or freshwater connectivity, can transport eDNA. This highlights the potential of eDNA to provide a comprehensive view of freshwater biodiversity. 

Photo

Credit: Rachel Henderson

A new paper published in the journal Proceedings of the Royal Society B used environmental DNA (eDNA) metabarcoding to analyze fish and zooplankton communities. The study found that the movement of water between freshwater bodies, or freshwater connectivity, can transport eDNA. This highlights the potential of eDNA to provide a comprehensive view of freshwater biodiversity. 

Aquatic ecosystems are connected by waterways, which allow fish, plants, and other organisms to move from one place to another. This connectivity is important for the resilience of aquatic populations, but it can also make it difficult to track the DNA of these organisms. 

The study, led by Dr Joanne Littlefair, a lecturer in biological sciences at Queen Mary University of London, looked at three lake networks containing 21 lakes in Canada’s Boreal Forest at IISD Experimental Lakes Area. The researchers found that within-lake eDNA generally reflected the habitat preferences of the species, but that some eDNA was also transported into downstream lakes. Lakes with a higher degree of connectivity had more eDNA detections that could not be explained by conventional monitoring techniques. 

The findings have implications for the use of eDNA to monitor biodiversity in freshwater ecosystems. eDNA is a promising tool for biodiversity monitoring, but data must be interpreted in light of connectivity in the landscape. 

“eDNA can be used to detect the presence of species that are not easily monitored using conventional methods, including invasive species, or for monitoring the presence of rare or endangered species,” said Dr Littlefair”.  “Our study showed that eDNA surveys can be carefully designed to consider the connectivity of the freshwater system being studied. In systems with high levels of connectivity, it is important to collect samples from multiple locations, which will allow us to build a complete picture of the biodiversity present”. 

The study also highlights the need for more research on the factors, such as effects of water movement, influencing the spatial resolution of eDNA detection. For example, if the water in an ecosystem is moving quickly, then it may be necessary to collect more samples to increase the chances of detecting eDNA. This research will help to improve scientists’ understanding of how eDNA can be used to monitor and conserve aquatic biodiversity. 

The study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the WSP Montreal Environment department. The study was a collaboration between researchers from the UK’s Queen Mary University of London and the following Canadian institutions: McGill University, Lakehead University, IISD Experimental Lakes Area, and SHARCNET. Dr Littlefair worked at McGill University and then QMUL during the study.  



Journal

Proceedings of the Royal Society B Biological Sciences

DOI

10.1098/rspb.2023.0841

Article Title

Freshwater connectivity transforms spatially integrated signals of biodiversity

Article Publication Date

13-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Habitat Conditions on Anopheles Larvae in Osun

September 3, 2025

Tracing Leaf Metabolism: Linking Photorespiration and One-Carbon Flux

September 3, 2025

Decoding Kazakhstan Soybean Genetics via Whole Genome Sequencing

September 3, 2025

Exploring Centipede Forcipules: Structure and Strength

September 3, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Method Enhances Incomplete Multigranulation Three-Way Regions

Unlocking Value: Extracting Compounds from Spent Coffee

Increased Extracellular BAG3 Marks Early Systemic Sclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.