• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

MU study shows how brucellosis — which can jump from animals to humans — impacts the brain

Bioengineer by Bioengineer
August 29, 2023
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBIA, Mo. – Brucellosis is a disease, caused by the members of bacterial Brucella family, that mainly infects cattle, goats and sheep, leading to pregnancy loss, which has caused billions of dollars in economic losses for livestock producers worldwide. The disease can also jump from animals to humans, mainly through consumption of unpasteurized dairy products or inhaling the spores from the tissues of infected animals.

bacteria

Credit: University of Missouri

COLUMBIA, Mo. – Brucellosis is a disease, caused by the members of bacterial Brucella family, that mainly infects cattle, goats and sheep, leading to pregnancy loss, which has caused billions of dollars in economic losses for livestock producers worldwide. The disease can also jump from animals to humans, mainly through consumption of unpasteurized dairy products or inhaling the spores from the tissues of infected animals.

While the disease can cause arthritis, inflammation of the heart and flu-like symptoms in humans, the bacteria can also enter the brain and cause neurobrucellosis, which can lead to long-term neurological complications, headaches, nausea, disorientation, swelling of the brain and sometimes death. Now, a new study at the University of Missouri has highlighted the protective power of both innate lymphoid cells and specific signaling proteins, known as interferons, in reducing the harmful neurological effects of Brucella.

The study, which was funded by the National Institutes of Health and used a mouse model, could potentially lead to future improvements in how the disease is both diagnosed and treated.

“While Missouri has been considered ‘Brucellosis free’ since 2004 and the bacteria has almost been completely eradicated in both humans and domestic animals nationwide, there are still areas where it persists like within bison in Yellowstone National Park,” said Charles Moley, a veterinarian and current doctoral student in the MU College of Veterinary Medicine (CVM) who led the study in the lab of Jerod Skyberg, an associate professor in the CVM. “Worldwide, it is one of the most common bacterial infections that jumps from animals to humans, and there are estimates it impacts more than 10 million people each year, mainly in the Middle East and Mediterranean regions.”

Moley is a veterinary scientist in the Comparative Medicine Program, and his research can potentially inform the work of other researchers by better understanding how the disease impacts the brain. Given the new knowledge of the critical protective role played by innate lymphoid cells and interferons, the study could lead to more targeted therapy interventions for humans worldwide suffering from neurobrucellosis or more targeted diagnostic approaches for identifying the disease before neurological symptoms appear or worsen.

“The work being done in MU’s Laboratory for Infectious Disease Research improves the health of both animals and humans, which is gratifying,” Moley said. “When I was recently visiting my grandparents in Arizona, I heard from a friend of my grandpa, who said his dad, who was a farmer, had died in the 1950s from brucellosis, and was thankful I was researching this topic. Stories like that motivate me, and I want to help.”

“Innate lymphoid cells and interferons limit neurologic and articular complications of Brucellosis” was recently published in The American Journal of Pathology.

-30-



Journal

American Journal Of Pathology

DOI

10.1016/j.ajpath.2023.05.006

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Innate lymphoid cells and interferons limit neurologic and articular complications of Brucellosis

Article Publication Date

21-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.