• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Adapting to water temperature changes: the smart “coat” of Yangtze finless porpoise

Bioengineer by Bioengineer
August 7, 2023
in Biology
Reading Time: 3 mins read
0
The thickness of the blubber changes with the water temperature
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cetaceans, including dolphins and whales, spend their entire lives in the water. Unlike terrestrial animals, they face greater challenges in regulating their body temperature because water conducts heat 25 times faster than air. However, these clever marine mammals have evolved an incredible adaptation – a specialized subcutaneous blubber layer that serves as an intelligent thermal coat, crucial for their survival.

The thickness of the blubber changes with the water temperature

Credit: Tang, B. et al.

Cetaceans, including dolphins and whales, spend their entire lives in the water. Unlike terrestrial animals, they face greater challenges in regulating their body temperature because water conducts heat 25 times faster than air. However, these clever marine mammals have evolved an incredible adaptation – a specialized subcutaneous blubber layer that serves as an intelligent thermal coat, crucial for their survival.

So how does this blubber layer contribute to thermoregulation?

In a study using B-mode ultrasound imaging, a team of researchers in China monitored the blubber thickness in Yangtze finless porpoises (YFPs) over different seasons. They made a fascinating discovery – the thickness of the blubber changes with the water temperature.

“When the water gets colder, their blubber layer becomes thicker, acting like a warm, cozy down jacket,” shares Bin Tang, first author of the study. “And when the water warms up, their blubber gets thinner, helping them stay cool and comfortable.”

Interestingly, the blubber thickness of cetaceans exhibits varying patterns across different body regions in response to water temperature changes. Specifically, in the dorsal region, blubber thickness decreases linearly as the water temperature increases. However, in the lateral and ventral regions, significant changes in blubber thickness occur only when the water temperature reaches approximately 18 oC.

The researchers, who published their findings in the KeAi journal Water Biology and Security, also investigated the interconnection between energy intake, blubber thickness, and water temperature.

“It appears that water temperature might influence changes in blubber thickness by affecting the appetite of these marine mammals,” adds Tang.

Nonetheless, the relationship between energy intake, blubber thickness, and how it is influenced by water temperature is a complex subject that merits deeper investigation to uncover the underlying mechanisms.

“By delving deeper into these aspects, we can gain valuable insights into the adaptive strategies of cetaceans and the mechanisms they employ to thrive in various aquatic environments, concludes corresponding author Yujiang Hao. “Such knowledge could have broader implications for understanding marine ecosystems and potentially even aid in conservation efforts for these remarkable marine mammals.”

###

Contact the corresponding author: Yujiang Hao, Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, E-mail address: [email protected].

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Water Biology and Security

DOI

10.1016/j.watbs.2023.100200

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Variation of blubber thickness of the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in human care: Adaptation to environmental temperature

COI Statement

Ding Wang is a Guest Editor for Water Biology and Security and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.