• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The approaches to achieve high-performance wearable sensors with hydrogels

Bioengineer by Bioengineer
July 28, 2023
in Chemistry
Reading Time: 2 mins read
0
The schematic diagram of the enhancement of performance and the utilization of hydrogels.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This review is written by Dr. Weixing Song from the Department of Chemistry, Capital Normal University. The paper reviewed the toughness and conductive network of existing hydrogel sensors. It emphasized the development status of various hydrogel sensors and highlighted strategies to enhance their mechanical and electrical performance. The findings are valuable for designing components and structures of high-performance wearable hydrogel sensors.

The schematic diagram of the enhancement of performance and the utilization of hydrogels.

Credit: ©Science China Press

This review is written by Dr. Weixing Song from the Department of Chemistry, Capital Normal University. The paper reviewed the toughness and conductive network of existing hydrogel sensors. It emphasized the development status of various hydrogel sensors and highlighted strategies to enhance their mechanical and electrical performance. The findings are valuable for designing components and structures of high-performance wearable hydrogel sensors.

The increasing demand for healthcare IoT devices drives the development of wearable electronics. Electronic skins possess softness, stretchability, and self-healing properties, making them ideal for various applications. Hydrogels, with properties similar to human skin, have gained interest due to their flexibility and ability to accurately detect deformations. Hydrogels can also repair themselves through various reactions, offering great potential for development of hydrogel-based sensors.

The 3D network of hydrogels combines solid-like properties with efficient substance transport through aqueous phases. Toughened hydrogels, including double-network, hydrophobic associated, and composite hydrogels, are reinforced through physical or chemical cross-linking, resulting in increased ductility and toughness. This makes them suitable for integration into electronic devices that can conform to the stretching of human skin or joints. Incorporating electronic conductors or ions into hydrogels forms conductive hydrogels, enhancing conductivity and contributing to the matrix network structure. The elastic matrix and conductive component are essential in conductive hydrogels.

This paper concludes the advancement of hydrogel sensors and point outs crucial scientific and technical concerns that require additional investigation. The paper contends that an optimal hydrogel sensor should exhibit resilience in harsh environments, possess excellent resistance to moisture and expansion, demonstrate compatibility with human skin, and exhibit distinctive mechanical and electrical properties. Furthermore, it should be capable of intelligent data processing to fulfill the demands of everyday life. Despite the progress made, existing hydrogel sensors encounter challenges and necessitate ongoing research and development to achieve successful integration, packaging, and other essential technologies.

This review emphasizes the techniques aimed at enhancing the mechanical and electrical capabilities of hydrogel sensors to meet the future requirements of wearable devices. Such advancements hold the potential to expand the horizons of intelligent health monitoring, artificial intelligence, virtual reality, and contribute to the progress of human-computer interaction and artificial limbs.

###

See the article:

Pathways towards wearable and high-performance sensors based on hydrogels: toughening networks and conductive networks

https://doi.org/10.1093/nsr/nwad180



Journal

National Science Review

DOI

10.1093/nsr/nwad180

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.