• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Successful structure search: Construction of monoatomic lead layers with specially developed method unveiled for the first time

Bioengineer by Bioengineer
July 24, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the Professorship of Analysis of Solid Surfaces (Head: Prof. Dr. Christoph Tegenkamp) and the Professorship of Experimental Physics with a focus on Technical Physics (Head: Prof. Dr. Thomas Seyller) of Chemnitz University of Technology are researching the functionalization of low-dimensional electron gases as part of the research group “Proximity-induced correlation effects in low-dimensional structures (FOR 5242)”.

Construction of Monoatomic Lead Layers with Specially Developed Method Unveiled for the First Time

Credit: Franziska Schölzel/Chemnitz University of Technology

Scientists from the Professorship of Analysis of Solid Surfaces (Head: Prof. Dr. Christoph Tegenkamp) and the Professorship of Experimental Physics with a focus on Technical Physics (Head: Prof. Dr. Thomas Seyller) of Chemnitz University of Technology are researching the functionalization of low-dimensional electron gases as part of the research group “Proximity-induced correlation effects in low-dimensional structures (FOR 5242)”.

In a recent publication in the renowned journal Advanced Materials Interfaces, the research team led by first author Dr. Philip Schädlich, a research associate at the Professorship of Experimental Physics with a focus on Technical Physics, presents a method for the detailed structural analysis of synthesized two-dimensional lead layers on a specially manufactured system for the first time. The presented approach has also made it possible to produce samples of sufficient quality to comprehensively describe the structures. The new insights from fundamental research could become relevant in the development of novel electronic systems and in the development of quantum materials for quantum computing.

“Our synthesis, together with a meticulous data analysis by the various groups, has now achieved this comprehensive picture of the two-dimensional lead layers,” says Philip Schädlich. “The controlled coupling of functionalized graphene to 2D electron gases opens up the possibility to investigate and control correlation effects and mesoscopic phenomena in 2D materials – for example superconductivity, spin or charge density waves and novel magnetic phases,” says Seyller.

To investigate these kinds of systems, the researchers, funded by the German Research Foundation (DFG), work across disciplines and locations. Partners from Jülich, Lund (Sweden), Hamburg, Regensburg, Göttingen, Stuttgart, and Braunschweig were involved. “The high degree of mixing with different professional competencies in our research group is necessary to be able to explore all facets of such complex problems in detail. Only in this way can structural and electronic properties of the self-made systems be linked,” says Prof. Dr. Christoph Tegenkamp, spokesman for the DFG research group.

Trick of Nature: Domain Boundaries in Response to Unsaturated Bonds

“The structure formation of the 2D lead layer is based on motifs that we know from previous experiments on the adsorption of lead on silicon surfaces,” explains Dr. Philip Schädlich, who coordinated most of the experiments. However, the flexibility of the lead bonds leads to a great variety in the phase diagram, for which the term “devil’s staircase” has been established.

In contrast, in the current experiment, the lattice mismatch between the substrate and the lead layer results in a shortage of lead atoms per silicon atom of the substrate, resulting in strains in the lead and unsaturated bonds on the substrate surface.

The researchers now know why this is: “It’s a trick of nature. The lead layer forms domains in which the lead atoms relax locally to their favorite distance and which are small enough so that the total offset between the lead and substrate lattice is not too large,” Schädlich explains. “To do this, the centers of neighboring domains have to be slightly offset against each other, so that the resulting boundaries of the domains just contain enough lead atoms to automatically also compensate all unsaturated bonds,” explains Chitran Ghosal, a doctoral student in Prof. Tegenkamp’s working group.

Great Importance of Domain Boundaries

The structure of the lead layer also has an impact on the graphene. Because the evaluation of the data showed a vanishingly low charge carrier concentration, which is about 1000 times lower than in epitaxial graphene. “Unlike significantly more efficient intercalants such as hydrogen, the lead layer also manages to shield or compensate the spontaneous polarization of the substrate and thus provide for quasi-charge neutrality,” Ghosal continues.

In addition, with the help of scanning tunneling microscopy at low temperatures of four Kelvin (approx. -269 degrees Celsius), the fingerprint of a so-called Kekulé ground state was revealed. Here too, the domain boundaries play a major role, as the electrons scattered on them, due to charge neutrality, only have a limited phase space available.

Background: DFG Research Group “Proximity-induced correlation effects in low-dimensional structures” led by Chemnitz University of Technology

Phenomena like the one currently described are at the heart of the DFG research group led by Prof. Tegenkamp. The research group, funded with over four million euros, has dedicated itself to investigating correlation effects in 2D materials and brings together the expertise of eight working groups from all over Germany. The goal is to manipulate 2D materials in a targeted manner and thus to research exotic effects such as superconductivity, charge density waves, Mott states, as well as the quantum Hall effect and Klein tunneling.



Journal

Advanced Materials Interfaces

DOI

10.1002/admi.202300471

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge-Neutral Epitaxial Graphene

Article Publication Date

23-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

August 29, 2025
Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Occupational Therapy’s Role in Delirium Care

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.