• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shark shock – scientists discover filter-feeding basking sharks are warm-bodied like great whites

Bioengineer by Bioengineer
July 20, 2023
in Biology
Reading Time: 4 mins read
0
Shark shock – scientists discover filter-feeding basking sharks are warm-bodied like great whites
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approximately 99.9% of fish and shark species are “cold-blooded”, meaning their body tissues generally match the temperature of the water they swim in – but researchers have just discovered the mighty basking shark is a one-in-a-thousand exception. Instead, these sharks keep the core regions of their bodies warmer than the water like the most athletic swimmers in the sea such as great white sharks, mako sharks and tuna.

Shark shock – scientists discover filter-feeding basking sharks are warm-bodied like great whites

Credit: Trinity College Dublin

Approximately 99.9% of fish and shark species are “cold-blooded”, meaning their body tissues generally match the temperature of the water they swim in – but researchers have just discovered the mighty basking shark is a one-in-a-thousand exception. Instead, these sharks keep the core regions of their bodies warmer than the water like the most athletic swimmers in the sea such as great white sharks, mako sharks and tuna.

The latter examples are so-called “regional endotherms” and are all fast swimming, apex predators at the top of the food chain. Scientists have long reasoned that their ability to keep warm helped with this athletic predatory lifestyle, and that evolution had shaped their physiology to match their requirements.

However, an international team of researchers led by those from Trinity College Dublin, has now shown that gentle, plankton-feeding basking sharks are also regional endotherms despite having very different lifestyles to white sharks and tunas. 

This surprising discovery has implications for conservation, as well as raising a plethora of ecological and evolutionary questions.

Haley Dolton, PhD Candidate in Trinity’s School of Natural Sciences, was lead author of the study that has just been published in international journal, Endangered Species Research.  She said: 

“The basking shark is a shining example of how little we know about shark species in general. That we still have lots to uncover about the second biggest fish in the world – such a huge, charismatic animal that most people would recognise it – just highlights the challenge facing researchers to gather what they can about species to aid in effective conservation strategies.

Basking sharks gained legal protection in Irish waters just last year, with the species having undergone significant population declines throughout the NE Atlantic in the last century. But they still face many challenges in the future.

Haley Dolton added: “Regional endotherms are thought to use more energy, and possibly respond differently to ocean warming than other fish species. So lots more work will need to be done to work out how these new findings regarding an endangered species might change previous assumptions about their metabolism or potential distribution shifts during our climate crisis, which is something marine biologists are focusing on as our planet and its seas continue to warm. 

“Hopefully this kind of research will continue the momentum needed to effectively protect these incredible animals in Irish waters and further afield.”

To make the discovery, the research team (including scientists from University of Pretoria, Marine Biological Association, Queen’s University Belfast, Zoological Society of London, University of Southampton, and Manx Basking Shark Watch) first undertook dissections of dead basking sharks that washed up in Ireland and the UK. 

They found that the sharks have cruise-swimming muscles located deep inside their bodies as seen in white sharks and tunas; in most fish this “red” muscle is instead found toward the outside of the animals. 

They also discovered basking sharks have strong muscular hearts that probably help generate high blood pressures and flows. Most fish species have relatively “spongy” hearts, whereas basking shark hearts are more typical of the regional endotherm species.

Next, the team designed a new low-impact tagging method to record body temperature of free-swimming basking sharks off the coast of Co Cork, Ireland. Researchers were able get close enough to 8 m basking sharks to safely deploy the tags, which recorded muscle temperature just under the skin for up to 12 hours before they automatically detached from the animals and were collected by the researchers.

These tags revealed that basking shark muscles are consistently elevated above water temperatures, and to almost exactly the same extent as their regionally-endothermic predatory cousins. 

Nicholas Payne, Assistant Professor in Trinity’s School of Natural Sciences, was senior author of the study. He said: 

“These results cast an interesting new light on our perception of form versus function in fishes because until now we thought regional endothermy was only found in apex predatory species living at high positions in the marine food web. 

“Now we have found a species that grazes on tiny plankton but also shares those rather uncommon regional endotherm features, so we might have to adjust our assumptions about the advantages of such physiological innovations for these animals.

“It’s a bit like suddenly finding that cows have wings.”



Journal

Endangered Species Research

DOI

10.3354/esr01257

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.