• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Termites as cause of fairy circles in Namib Desert confirmed

Bioengineer by Bioengineer
July 18, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For more than ten years, researchers have been discussing how the numerous circular bare patches in the middle of the African grasslands – the so-called fairy circles – can arise. In their current study “Sand termite herbivory causes Namibia’s fairy circles – A response to Getzin”, biologist Prof Dr Norbert Jürgens and soil scientist Dr Alexander Gröngröft from Universität Hamburg confirm that termites are the cause of the fairy circles. At the same time, they refute central arguments of the explanation put forward by ecosystem modellers that the circles are caused by self-regulation of the grasses.

Fairy circles in the Namib Desert.

Credit: UHH/MIN/Juergens

For more than ten years, researchers have been discussing how the numerous circular bare patches in the middle of the African grasslands – the so-called fairy circles – can arise. In their current study “Sand termite herbivory causes Namibia’s fairy circles – A response to Getzin”, biologist Prof Dr Norbert Jürgens and soil scientist Dr Alexander Gröngröft from Universität Hamburg confirm that termites are the cause of the fairy circles. At the same time, they refute central arguments of the explanation put forward by ecosystem modellers that the circles are caused by self-regulation of the grasses.

As early as 2013, the Hamburg botanist Norbert Jürgens published, that purely subterranean sand termites of the genus Psammotermes cause the bare patches and, by eliminating the plants in the sandy soils, enable long-lasting storage of water after infrequent rainfall. This explanation, published in “Science”, was confirmed in the years that followed by entomologists from southern Africa (Prof Mike Picker, Dr Joh Henschel, Dr Kelly Vlieghe).

Other researchers also investigated the mysterious phenomenon, e.g. at the University of Göttingen using modelling approaches. The researchers published (Getzin et al. 2015, 2022) that the bare patches are caused by self-organisation of the grass plants, which draw water unevenly to themselves with their roots and through extensive diffusion in the sandy soils, thus causing the death of grasses in the bare patches. Furthermore, by measuring soil moisture beneath the fairy circle in 20 cm depth, they found desiccation, which they interpreted as caused fast horizontal sucking of water by the grasses of the surrounding.

Norbert Jürgens and Alexander Gröngröft now refute the central arguments of the modellers from Göttingen in the article published by PPEES: In their study, Jürgens and Gröngröft demonstrated the presence of sand termites on more than 1,700 fairy circles in Namibia, Angola and South Africa. The soil moisture measurements cited by Getzin et. al (2022) as evidence for the self-organisation hypothesis coincide with Jürgens’ soil moisture measurements in 2013. However, the interpretations differ: While the modellers measure in the topsoil and interpret its drying out as withdrawal of water by the surrounding grasses, Jürgens showed in 2013 by simultaneous measurement at four different depths of up to 90 cm that the fairy circles in the subsoil store the water for a long time.

“Of even greater significance is that the analysis of my colleague Gröngröft and the measurements of the hydrological properties of the desert sand carried out in the laboratory invalidate the crucial foundations of the assumption of self-regulation,” says Jürgens. “The water conductivity of the coarse-grained sand of the fairy circles, in which the termites live, is indeed very high when a lot of water is present during a heavy rain event, which can then quickly seep away in the large pores. However, the situation is completely different when the sand has released the easily movable water into the depths and has dried out to less than about eight percent of the soil volume. Then water is only stored at the points of contact between the sand grains, a continuous film of water is missing and the soil’s ability to conduct water drops to very low levels. This means that at the levels of moisture found below fairy circles (≤5% by volume), very little liquid water transport can take place over short distances.” The formation of dry sand layers on the soil surface directly above moist subsoil demonstrates this physical phenomenon.

“The horizontal water transports over metres in a few days assumed by the representatives of self-regulation are physically impossible according to current knowledge. The debate about opposing interpretations of a biological phenomenon is thus surprisingly decided by physics, in this case soil physics,” says Jürgens.  “The soil moisture measurements on the fairy circles and the soil hydraulic properties of the sand found in the laboratory thus rule out the self-regulation hypothesis as an explanation for the fairy circles. The cause for the formation of the fairy circles is thus clear – it is the sand termites that secure a considerable survival advantage through soil moisture storage.”



Journal

Perspectives in Plant Ecology Evolution and Systematics

DOI

10.1016/j.ppees.2023.125745

Subject of Research

Animals

Article Title

Sand termite herbivory causes Namibia´ s fairy circles – A response to Getzin et al. (2022)

Article Publication Date

3-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NRAMP Genes in Tomato Under Stress

August 29, 2025

Unlocking Hoplia Beetles’ Microfluidic and Optical Secrets

August 29, 2025

EGCG Reduces Septic Shock by Modulating CXCL2

August 29, 2025

Harnessing Microproteins to Combat Obesity, Aging, and Mitochondrial Disorders

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

METTL3-Modulated circCDKAL1 Controls Allergy Inflammation Pathway

Lactate-Induced M2 Macrophages Boost Endometrial Cancer Progression

Enhancing Health Systems to Combat Viral Threats

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.