• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Formamide: a versatile small molecular building block for synthesizing heavily N-doped 1D & 2D carbon

Bioengineer by Bioengineer
July 17, 2023
in Chemistry
Reading Time: 3 mins read
0
THE STRUCTURE OF MORPHOLOGY OF 1D & 2D LOW-DIMENSIONAL CARBON MATERIALS AND THEIR PERFORMANCE OF SELECTIVE OXYGEN REDUCTION TO PRODUCING H₂O₂
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Low-dimensional carbon materials (LDCs), including graphene and carbon nanotubes, have attracted considerable attention due to their unique morphologies and intriguing electrical properties. However, these materials are typically less functionalized for electrochemical applications. Hence, it is crucial to devise a bottom-up synthesis route for LDCs that can enhance their electrochemical properties and establish a structure-performance relationship.

THE STRUCTURE OF MORPHOLOGY OF 1D & 2D LOW-DIMENSIONAL CARBON MATERIALS AND THEIR PERFORMANCE OF SELECTIVE OXYGEN REDUCTION TO PRODUCING H₂O₂

Credit: Zongge Li, Chenwei Wang, Anuj Kumar, Hongrui Jia, Yin Jia, Huifang Li, Lu Bai, Guoxin Zhang, Xiaoming Sun

Low-dimensional carbon materials (LDCs), including graphene and carbon nanotubes, have attracted considerable attention due to their unique morphologies and intriguing electrical properties. However, these materials are typically less functionalized for electrochemical applications. Hence, it is crucial to devise a bottom-up synthesis route for LDCs that can enhance their electrochemical properties and establish a structure-performance relationship.

Currently, most bottom-up methods for LDCs synthesis demand expensive precursors and tedious synthesis procedures, thereby severely impeding their electrochemical applications.

In a recent study published in the KeAi journal Advanced Powder Materials, a team of Chinese researchers proposed a novel route for constructing 1D/2D carbon nanostructures with tunable aspect ratios and a high nitrogen (N) content, employing a single starting source of small molecule-formamide. This innovative approach leads to the formation of a specific 1D-type polymerized (HCN)x, known as polyaminoimidazole (PAI). The PAI-based carbon nanostructures grown in a dimensional manner can subsequently undergo carbonization to obtain highly N-doped 1D or 2D carbon structures.

“The synthesis method proposed in this study is highly user-friendly, making it suitable for scaling up in both laboratory and industrial settings,” explains one of the study’s authors, Guoxin Zhang, a professor in controllable synthesis of carbon nanomaterials at Shandong University of Science and Technology. “The LDCs derived from formamide exhibit an extremely high N content, exceeding 40 atomic percent, as measured after undergoing solvothermal treatment.”

Notably, even after annealing at temperatures as high as 900 °C, over 10 atomic percent of N content is retained. “This fascinating finding enables the design of a wide range of electrochemical functionalities for applications in energy storage and catalysis,” added Zhang.

The team also made an interesting observation regarding the addition of melamine, a compound with three outwardly extending amino groups, during the solvothermal treatment of formamide. By introducing melamine as a “seed,” it has the ability to transform the original 1D growth pattern of formamide into a 2D structure, leading to the formation of thin layers of 2D carbon materials.

The study elucidates that the growth of both 1D and 2D low-dimensional carbon materials (LDCs) follows a specific pathway: (1) dehydration of formamide to HCN molecules, (2) polymerization of HCN into tetramers and subsequent 12-mers (polyamines), (3) decyanation of the 12-mers, and finally (4) intramolecular cyclization. The precise atomic structure of the LDCs product can be resolved using neutron diffraction technology, allowing the determination of the pair distribution function, as depicted in the graph, which corresponds to the structure of polyaminoimidazole (PAI).

“Until now, it has been challenging to directly grow LDCs with such high nitrogen content at mild temperatures. Our approaches pioneer the controllable synthesis of nanocarbons using small molecular building blocks,” said the study’s lead author, Zongge Li. “These materials can be effectively employed as electrocatalysts for energy-efficient production of hydrogen peroxide disinfectant.”

###

Contact the author: Guoxin Zhang, Institute of Energy Storage Technology, Shandong University of Science and Technology, China, [email protected].

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Advanced Powder Materials

DOI

10.1016/j.apmate.2023.100138

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Anisotropic solution growth of 1D/2D N-rich carbon

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.