• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Will you take ruthenium with your tea or coffee?

Bioengineer by Bioengineer
July 11, 2023
in Chemistry
Reading Time: 3 mins read
0
Will you take ruthenium with your tea or coffee?
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study by Lionel Delaude and François Mazars, researchers from the Laboratory of Catalysis at the University of Liège (Belgium), has shown that caffeine and theophylline can be used to ‘green’ catalysts based on ruthenium. This chemical element belongs to the transition metals. The results of this study have been published in the scientific journal Organometallics and will remain in open access for six months.

"Greening" Ruthenium-Arene Catalyst Precursors with N-Heterocyclic Carbene Ligands Derived from Caffeine and Theophylline

Credit: ©ULiège/L.Delaude

A study by Lionel Delaude and François Mazars, researchers from the Laboratory of Catalysis at the University of Liège (Belgium), has shown that caffeine and theophylline can be used to ‘green’ catalysts based on ruthenium. This chemical element belongs to the transition metals. The results of this study have been published in the scientific journal Organometallics and will remain in open access for six months.

Catalysts are ubiquitous in chemical processes because they enable reactions to be carried out faster and more selectively under milder experimental conditions. They are generally obtained from non-renewable raw materials, often derived from petrochemicals and metallurgy. In line with the twelve principles of “green chemistry”, chemists are now seeking to reduce the carbon footprint of their processes as much as possible. In this context, the team from the Laboratory of Organometallic Chemistry and Homogeneous Catalysis at the University of Liège has developed biobased catalysts derived from caffeine and theophylline, two natural substances from the xanthine family found in large quantities in coffee beans, tea leaves, and cocoa beans. The whole process of adding value to these compounds is environmentally friendly, since their extraction and separation from renewable plant sources requires only water and supercritical CO2 ,” explains Lionel Delaude, professor of chemistry and director of the laboratory. What’s more, they are under-exploited and available at low cost.

Slight modifications to the chemical structure of xanthines can be used to synthesize N-heterocyclic carbene precursors, which form the basis of many catalysts in the 21st  century.  The work of Lionel Delaude and his doctoral student François Mazars has shown that the combination of a para-cymene ligand derived from a-phellandrene (an essential oil found in many plants, including dill and eucalyptus) and an N-heterocyclic carbene ligand derived from caffeine or theophylline with ruthenium (a low-toxicity metal from the iron family) leads to the formation of highly effective catalysts for promoting three major types of organic reaction, namely, the transfer hydrogenation of unsaturated substrates with isopropanol, the oxidation of alkenes with sodium periodate, and the synthesis of vinyl esters from 1-hexyne and benzoic acid. This discovery contributes to developing more sustainable and environmentally friendly organometallic chemistry. Moreover, it opens the door to other catalytic applications using caffeine and theophylline to generate bio sourced N-heterocyclic carbenes.


This publication in Organometallics has been singled out by the editors of the American Chemical Society to be highlighted on the day of its publication (28 May 2023) and to remain in open access for six months as part of the ACS Editors’ Choice programme. It has also been selected to appear on the cover of an issue of the journal (July 10 2023).

https://pubs.acs.org/editorschoice/



Journal

Organometallics

DOI

10.1021/acs.organomet.3c00166

Article Title

Greening” Ruthenium-Arene Catalyst Precursors with N-Heterocyclic Carbene Ligands Derived from Caffeine and Theophylline

Article Publication Date

10-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025
blank

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    184 shares
    Share 74 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rab5 GTPases Direct ROP Signaling for Pollen Polarity

New Brain PET Tracer Targets TDP-43 Pathology

Evaluating Chinese Nurses’ Sexual Harassment Scale Validity

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.