• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

COATS experiment revealed the three-dimensional structural image of the atmospheric boundary layer during haze pollution in the North China Plain

Bioengineer by Bioengineer
June 26, 2023
in Chemistry
Reading Time: 2 mins read
0
Three-dimensional structure of the atmospheric boundary layer and distribution of PM2.5 concentrations in the piedmont area of the North China Plain during a typical haze pollution process in winter
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The results of the experiment “Comprehensive Observation on the Atmospheric boundary layer Three-dimensional Structure” (COATS) were recently published online in SCIENCE CHINA Earth Sciences. Based on the COATS experiment, the understanding of the physical mechanism and spatial structure of the atmospheric boundary layer (ABL) during haze pollution was enriched.

Three-dimensional structure of the atmospheric boundary layer and distribution of PM2.5 concentrations in the piedmont area of the North China Plain during a typical haze pollution process in winter

Credit: ©Science China Press

The results of the experiment “Comprehensive Observation on the Atmospheric boundary layer Three-dimensional Structure” (COATS) were recently published online in SCIENCE CHINA Earth Sciences. Based on the COATS experiment, the understanding of the physical mechanism and spatial structure of the atmospheric boundary layer (ABL) during haze pollution was enriched.

From 2016 to 2020, Peking University, together with the Chinese Academy of Meteorological Sciences and the Institute of Atmospheric Physics, Chinese Academy of Sciences, conducted the COATS experiment in the North China Plain (NCP). The COATS experiment adopted a “point-line-surface” spatial layout, obtaining both spatial-temporal profiles of the meteorological and environmental elements in the ABL and the turbulent transport data of fine particulate matter (PM2.5) in winter and summer.

The COATS experiment made new discoveries regarding the spatial structure heterogeneity of the ABL and its influence on the spatial distribution of pollutants. Three-dimensional structural images of the ABL during haze pollution in the NCP were obtained. It was determined that the spatial structure of the ABL adjusted by the Taihang Mountains is responsible for the heterogeneous distribution of haze pollution in the NCP, and that mountain-induced vertical circulations can promote the formation of elevated pollution layers. The restraints of the atmospheric internal boundaries on horizontal diffusion of pollutants were emphasized.

Futhermore, the typical thermal structure of persistent heavy haze events and the pollutant removal mechanism by low-level jets were revealed. The quantitative contribution of the ABL processes to pollutant transport and diffusion in different seasons was evaluated. The concept of “aerosol accumulation layer” was defined, and the applicability of the material method in determining the atmospheric boundary layer height was clarified. A measurement system for obtaining the turbulent flux of PM2.5 concentrations was developed and the understanding of the turbulent transport of PM2.5 between the ground and the atmosphere was expanded.

See the article:

Li Q, Zhang H, Zhang X, Cai X, Jin X, Zhang L, Song Y, Kang L, Hu F, Zhu T. COATS: Comprehensive observation on the atmospheric boundary layer three-dimensional structure during haze pollution in the North China Plain. Science China Earth Sciences, 66(5): 939–958, https://doi.org/10.1007/s11430-022-1092-y



Journal

Science China Earth Sciences

DOI

10.1007/s11430-022-1092-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Enigmatic Glow in the Milky Way May Signal Presence of Dark Matter

Enigmatic Glow in the Milky Way May Signal Presence of Dark Matter

October 16, 2025
blank

Research Team at Universitat Jaume I Develops AI-Powered Robotic Platform to Drive Sustainable Industry Transition

October 16, 2025

Breakthrough Low-Cost, High-Efficiency Single-Photon Source Paves the Way for the Quantum Internet

October 16, 2025

Revolutionizing Communication: The Quantum Radio Antenna Unveiled

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1251 shares
    Share 500 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rising Cases of Pickleball-Related Eye Injuries in Emergency Room Visits

Revolutionary Spintronic Macro Enhances AI Computing Efficiency

Tracking mRNA Lipid Nanoparticles: Particle to Protein

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.