• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel single crystals show promising electric field control of magnetism

Bioengineer by Bioengineer
June 26, 2023
in Chemistry
Reading Time: 2 mins read
0
Novel Single Crystals Show Promising Electric Field Control of Magnetism
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by associate Prof. YIN Lihua from Institute of Solid State physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS) demonstrated clear control of magnetism (M) at low electric fields (E) at room temperature in a recent research. The E-induced phase transformation and lattice distortion were found to result in the E control of M in multiferroic BiFeO3-based solid solutions near the morphotropic phase boundary (MPB).

Novel Single Crystals Show Promising Electric Field Control of Magnetism

Credit: YIN Lihua

A research team led by associate Prof. YIN Lihua from Institute of Solid State physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS) demonstrated clear control of magnetism (M) at low electric fields (E) at room temperature in a recent research. The E-induced phase transformation and lattice distortion were found to result in the E control of M in multiferroic BiFeO3-based solid solutions near the morphotropic phase boundary (MPB).

This research was published in Acta Materialia.

Multiferroic materials, with magnetic and ferroelectric properties, are promising for multifunctional memory devices. Magnetoelectric-based control methods in insulating multiferroic materials require less energy and have potential for high-speed, low-energy-consumption information storage applications. BiFeO3 is a room-temperature multiferroic material with potential for use in spin-electronics devices, but its weak ferromagnetic and magnetoelectric effects and high required voltage for manipulation are weaknesses.

In this research, scientists grew single crystals of multiferroic 0.58BiFeO3–0.42Bi0.5K0.5TiO3 (BF-BKT) that were located in the tetragonal region adjacent to the MPB.

“Below the Néel temperature, TN~257.5 K, the BF-BKT crystals showed antiferromagnetic behavior,” said YIN, “and at room temperature, we found that BF-BKT crystals exhibited both short-range magnetic order and long-range ferroelectric order.”

At room temperature, the multiferroic BF-BKT single crystals exhibited substantial and consistent control of M with E, where the magnitude of E was significantly less than the ferroelectric coercive field (EC). Additionally, high magnetic fields (H) were able to considerably reduce the degree of E control over M.

It has been found that the coupling between magnetism and ferroelectricity in BF-BKT material can be attributed to both lattice distortion and phase transformation induced by an external E, rather than just ferroelectric domain switching. At high values of H, the converse magnetoelectric effect is weakened due to the suppression of phase transformation caused by the magnetic field.

These results suggested that designing devices based on multiferroics near the MPB could be an effective way to achieve E control of M and even possible low-E switching of M for low-power spintronic applications.



Journal

Acta Materialia

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.