• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug-resistant fungi are thriving in even the most remote regions of Earth

Bioengineer by Bioengineer
June 21, 2023
in Health
Reading Time: 3 mins read
0
Jianping Xu
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New McMaster research has found that a disease-causing fungus — collected from one of the most remote regions in the world — is resistant to a common antifungal medicine used to treat infections.

Jianping Xu

Credit: McMaster University

New McMaster research has found that a disease-causing fungus — collected from one of the most remote regions in the world — is resistant to a common antifungal medicine used to treat infections.

The study, published today in mSphere, showed that seven per cent of Aspergillus fumigatus samples collected from the Three Parallel Rivers region in Yunnan, China were drug resistant.

Perched 6,000 metres above sea level and guarded by the staggering glaciated peaks of the Eastern Himalayas, the region is sparsely populated and undeveloped, which makes the presence of antimicrobial-resistant strains of A. fumigatus all the more striking for Jianping Xu, who led the study with colleagues in China.

“Seven per cent may seem like only a small number, but these drug-resistant strains are capable of propagating very quickly and taking over local and regional populations of this species,” explains Xu, a professor of biology at McMaster University and a member of the Michael G. DeGroote Institute for Infectious Disease Research. “There is a need for increased surveillance of drug resistance in the environment across diverse geographic regions.”

This study is the third in a trio of related studies by Xu and colleagues. The first study found that approximately 80 per cent of A. fumigatus samples from Yunnan greenhouses were resistant to commonly used antifungal drugs, while the second study determined that around 15 per cent of samples from Yunnan agricultural fields, lake sediments, and forests were likewise resistant.

Xu, whose research also supports the Global Nexus School for Pandemic Prevention & Response, says that while there is increasing evidence supporting the natural development of resistance in the environment, the outward gradation of resistance from greenhouses indicates that these resistant Himalayan strains of A. fumigatus were likely born from the spores of other fungi that were overexposed to agricultural fungicides in other settings.

That these drug-resistant spores could potentially travel to and propagate in such remote areas is concerning for global spread, Xu says.

“This fungus is highly ubiquitous — it’s around us all the time,” he explains. “It is estimated that we all inhale hundreds of spores of this species every day. While it doesn’t always cause noticeable health problems, three to four million people experience disease symptoms caused by A. fumigatus each year. It can be very dangerous — it can lead to lung removal or even death — and now, increasingly, many of these infections will be impacted by drug resistance.”

Already, in conducting other research, Xu has examined identical mechanisms of resistance in strains of fungi found in the Northwest Territories and India — some 10,000 kilometres apart.

“Unlike viruses like COVID-19, fungi don’t need a host to spread,” Xu explains. “They can travel on humans, through trade, and even on strong winds.”

With the latter in mind, Xu will soon head back to the mountainous regions of China to sample the air for fungal spores, which he hopes will add clarity to how these resistant strains are reaching and growing in such remote regions.



Journal

mSphere

DOI

10.1128/msphere.00071-23

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Genetic Structure and Triazole Resistance among Aspergillus fumigatus Populations from Remote and Undeveloped Regions in Eastern Himalaya

Article Publication Date

21-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacteria: Innovative Living Biosensors for DNA Detection

October 30, 2025

AI-Powered QSAR Uncovers Safe HGFR Inhibitors

October 30, 2025

19 Women’s College Basketball Coaches Collaborate to Advance Research on Women’s Cardiovascular Health

October 30, 2025

New Study Reveals Impact of Early Diabetes Treatment on Health Outcomes

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prodrug Florfenicol Amine Targets Resistant Mycobacterium abscessus

Successful Conversion Surgery Post-Chemotherapy in Pancreatic Cancer

Bacteria: Innovative Living Biosensors for DNA Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.