• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Revealing magnetic mysteries: uOttawa breakthrough builds better single molecule magnets

Bioengineer by Bioengineer
June 20, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the University of Ottawa have invented a unique method to create better molecule-based magnets, known as single-molecule magnets (SMMs). This synthetic tour de force has resulted in a two-coordinate lanthanide complex which has magnet-like properties that are intrinsic to the molecule itself. This discovery opens the door to high-density hard disks, quantum computing applications, and the creation of faster and more compact memory devices.

Revealing magnetic mysteries: uOttawa breakthrough builds better single molecule magnets

Credit: University of Ottawa

Scientists from the University of Ottawa have invented a unique method to create better molecule-based magnets, known as single-molecule magnets (SMMs). This synthetic tour de force has resulted in a two-coordinate lanthanide complex which has magnet-like properties that are intrinsic to the molecule itself. This discovery opens the door to high-density hard disks, quantum computing applications, and the creation of faster and more compact memory devices.

Lanthanide ions like to surround themselves with many organic ligands to stabilize and fill their coordination sphere. But thanks to a novel ligand design and synthetic approach, uOttawa scientists have managed to not only isolate the rare and precious two-coordinate species, but also to reveal, for the first time ever, a huge energy level separation, just as theory had predicted. This complex is a synthetic achievement that shows the incredible potential of these molecules.

The research took place at the Department of Chemistry and Biomolecular Sciences at the University of Ottawa, and was led by Muralee Murugesu, a full professor at the Faculty of Science, in collaboration with Professor Akseli Mansikkamäki from the University of Oulu, Finland, and with uOttawa post-doctoral fellows Diogo A. Gálico and Alexandros A. Kitos, as well as doctoral students Dylan Errulat and Katie L. M. Harriman.

“We have shown very exciting results that confirm for the first time what theory had predicted before and also offer a synthetic way to make better molecular magnets. These magnets are very useful for making smaller and faster memory devices and quantum computers because they have nanoscale sizes and special quantum features, such as quantum tunnelling of the magnetization or quantum coherence,” said Professor Murugesu.

A Game-Changing Discovery

“We used our CFI-funded equipment to measure the magnetic and luminescent properties of our complexes at very low temperatures, below 10 Kelvin. These measurements showed us the intricate electronic structure of our complexes. We also confirmed our findings with computational studies in collaboration with Professor Mansikkamäki at the University of Oulu, Finland,” adds Professor Murugesu.

Since 2007, the Murugesu Group at the University of Ottawa has been working on single molecule magnets (SMMs) that can store and process information at the molecular level. This highly anticipated material promises to save energy and space to make electronics faster and better, which could change the way data is stored and usher in a new era of molecular electronics.

The study detailing this achievement, entitled A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation was published in Nature Chemistry.



Journal

Nature Chemistry

DOI

10.1038/s41557-023-01208-y

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation

Article Publication Date

25-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Insights into Potent HLA-C COVID-19 T Cells

Decentralised Solar Boosts Reliability, Cuts Emissions, Saves Assets

Clarifying ECMO Weaning with Neurally Adjusted Ventilation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.