• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fish farms can become biogas producers

Bioengineer by Bioengineer
June 20, 2023
in Biology
Reading Time: 3 mins read
0
Fish in a tank
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Digesting fish waste can allow circular fish and vegetable farms (aquaponics) to produce biogas that can be fed back into the energy system of these farms. This also generates excellent nutrition for plants, according to new research from the University of Gothenburg.

Fish in a tank

Credit: Victor Lobanov

Digesting fish waste can allow circular fish and vegetable farms (aquaponics) to produce biogas that can be fed back into the energy system of these farms. This also generates excellent nutrition for plants, according to new research from the University of Gothenburg.

There is increasing growth in circular, land-based, combined fish and vegetable farms- often referred to as aquaponics. Aquaponics makes use of nutrient-rich water produced by fish (aquaculture) which can be used to fertilise plants (hydroponics) in a closed, soil-less system with the help of bacteria that grow naturally within the systems. These food production models imitates the fertilisation that occurs in river and lake ecosystems. The solid waste of fish has been a by-product with no particular value until now. But a research project at the University of Gothenburg has used the waste to make biogas that can contribute to meeting the energy needs of the aquaponic farms. This is described in Victor Lobanov’s dissertation.

Waste is broken down in an anaerobic environment

“By breaking down fish faecal matter in an anaerobic environment – known as digestion – we can obtain a concentrated gas mixture of 70 percent methane that can be used as fuel. This can make aquaponics a source of energy,” says Victor Lobanov, doctoral student of marine biology at the University of Gothenburg.

The study also shows that the nutrients released in the digestion of waste are more easily available for plants compared to synthetic nutrition solutions.

“Fish waste contains a lot of nutrients. These should also be usable in aquaponics to enable even more sustainable food production than today,” says Victor Lobanov.

Another benefit is that carbon dioxide is produced when the biogas is used as fuel, which is a necessary supplement when plants are grown in an enclosed space, like a greenhouse.

Pilot starts this summer

For now, the digestion process has only been tested in a lab environment, but a pilot in a commercial aquaponics facility is starting this summer. It will give researchers insights into how well the method can handle perturbations to the system and what needs to be done to create a more robust digestion pipeline. Victor Lobanov’s goal is to create modular digestion systems that can be Integrated into existing aquaculture and aquaponic facilities.

There is significant interest from the industry, and the technology could also be used in other animal husbandry applications such as piggeries. The sludge left over after digestion is still extremely nutritious and can be used for traditional fertilisation of fields. In this new process, the residual sludge leftover and, crucually, its eutrophication potential, is reduced.

“In many countries, the quantity of fertiliser produced in livestock farming is a problem. It can only be spread on fields during certain times of the year and removing wastes from the farm is associated with extra costs during pumping and transportation. Digestion of the fish solids reduces the quantity of waste produced by farms while additionally producing energy and a great fertiliser for hydroponics,” says Victor Lobanov.



Journal

Aquacultural Engineering

DOI

10.1016/j.aquaeng.2023.102328

Method of Research

Experimental study

Article Title

Simultaneous Biomethane Production and Solids Waste Treatment in Aquaculture

Article Publication Date

15-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.