• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ba2LuAlO5: A new proton conductor for next-generation fuel cells

Bioengineer by Bioengineer
June 6, 2023
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The discovery of Ba2LuAlO5 as a promising proton conductor paints a bright future for protonic ceramic fuel cells, report scientists from Tokyo Tech. Experiments show that this novel material has a remarkably high proton conductivity even without any additional chemical modifications, and molecular dynamics simulations reveal the underlying reasons. These new insights may pave the way to safer and more efficient energy technologies.  

A New Proton Conductor For Better Fuel Cells

Credit: Prof.M.Yashima, Tokyo Institute of Technology

The discovery of Ba2LuAlO5 as a promising proton conductor paints a bright future for protonic ceramic fuel cells, report scientists from Tokyo Tech. Experiments show that this novel material has a remarkably high proton conductivity even without any additional chemical modifications, and molecular dynamics simulations reveal the underlying reasons. These new insights may pave the way to safer and more efficient energy technologies.  

When talking about sustainability, the ways in which a society generates energy are some of the most important factors of consideration. Eager to eventually replace traditional energy sources such as coal and oil, scientists across the world are trying to develop environmentally friendly technologies that produce energy safely and more efficiently. Among them, fuel cells have been steadily gaining traction since the 1960s as a promising approach to producing electricity directly from electrochemical reactions.

However, typical fuel cells based on solid oxides have a notable drawback in that they operate at high temperatures, usually over 700 °C. That is why many scientists have focused on protonic ceramic fuel cells (PCFCs) instead. These cells use special ceramics that conduct protons (H+) instead of oxide anions (O2−). Thanks to a much lower operating temperature in the range of 300 to 600 °C, PCFCs can ensure a stable energy supply at a lower cost, compared to most other fuel cells. Unfortunately, only a few proton-conducting materials with reasonable performance are currently known, which is slowing down progress in this field.

To address this challenge, a team of researchers, including Professor Masatomo Yashima from Tokyo Institute of Technology (Tokyo Tech) in Japan, has been on the lookout for good proton conductor candidates for PCFCs. In their latest study, published in Communications Materials, the team reported the remarkable properties of Ba2LuAlO5, a new hexagonal perovskite-related oxide that has provided interesting insights into proton conduction.

Prof. Yashima and colleagues discovered Ba2LuAlO5 while focusing on finding compounds with a lot of intrinsic oxygen vacancies. This was motivated by the results of previous studies highlighting the importance of these vacancies in proton conduction. Experiments on Ba2LuAlO5 samples revealed that this material has a high proton conductivity in its bulk at low temperatures—its conductivity was 10‒2 S cm‒1 at 487 °C and 1.5×10‒3 S cm‒1 at 232 °C—even without additional chemical refinements such as doping.

Afterwards, the team sought to find out the underlying reasons for this property. Through molecular dynamics simulations and neutron diffraction measurements, they learned two important characteristics of Ba2LuAlO5. The first is that this oxide absorbs a lot of water (H2O), compared to other similar materials, to form Ba2LuAlO5.0.5H2O. This large water uptake, which occurs within two opposing layers of AlO4 tetrahedra, is made possible by a high number of intrinsic oxygen vacancies in the hexagonal close-packed h’ BaO layers. In turn, the oxide’s higher water content increases its proton conductivity through various mechanisms, such as higher proton concentration and enhanced proton hopping.

The second important characteristic is related to how protons move through Ba2LuAlO5. Simulations revealed that protons diffuse mainly along the interfaces of LuO6 layers, which form cubic close-packed c BaO3 layers, rather than through the AlO4 layers. This information could be critical in the search for other proton conducting materials, as Prof. Yashima explains: “Our work provides new design guidelines that open up unexplored avenues for the development of higher-performance proton conductors in the future.”

 

The researchers expect to find other proton-conducting materials based on Ba2LuAlO5 in upcoming studies. “By modifying the chemical composition of Ba2LuAlO5, further improvements in proton conductivity can be expected,” comments Prof. Yashima, “For example, the perovskite-related oxide Ba2InAlO5 may also exhibit high conductivity since its structure is quite similar to that of Ba2LuAlO5.”

Overall, the future of PCFCs seems bright and, by extension, so does the future of sustainable energy generation technologies.

###

  • The Yashima Research Group
  • Discovering Hidden Order in Disordered Crystals | Tokyo Tech News
  • Novel Oxychloride Shows High Stability and Oxide-Ion Conduction through Interstitial Oxygen Site | Tokyo Tech News
  • Elucidating the Mechanism of High Proton Conduction to Develop Clean Energy Materials | Tokyo Tech News
  • Fueling the Future with New Perovskite-related Oxide-ion Conductors | Tokyo Tech News
  • In the Spotlight: Successful Synthesis of Perovskite Visible-Light-Absorbing Semiconductor Material | Tokyo Tech News
  • New Ba7Nb4MoO20-Based Materials with High Oxygen-Ion Conductivity Could Open Sustainable Future | Tokyo Tech News
  • New High Proton Conductors with Inherently Oxygen Deficient Layers Open Sustainable Future | Tokyo Tech News
  • Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity | Tokyo Tech News
  • Apatite-Type Materials without Interstitial Oxygens Show High Oxide-Ion Conductivity by Overbonding | Tokyo Tech News
  • Discovery of a new structure family of oxide-ion conductors “SrYbInO4” | Tokyo Tech News

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/



Journal

Communications Materials

DOI

10.1038/s43246-023-00364-5

Method of Research

Experimental study

Subject of Research

Not applicable

Article Publication Date

6-Jun-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

August 29, 2025
Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

Predictive Models Shape Transplant Eligibility Decisions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.