• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists unveil RNA-guided mechanisms driving cell fate

Bioengineer by Bioengineer
May 30, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The early stages of embryonic development contain many of life’s mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments.

Researchers based at the Australian Regenerative Medicine Institute (ARMI) at Monash University have characterised a critical time in mammalian embryonic development using powerful and innovative imaging techniques, with their work published in Nature Communications. 

“Just a few days into the journey of embryogenesis, when turning into 16 cells, the embryo must make its first difficult decision – which of its cells will give rise to the embryo or will become extra-embryonic tissue, for example, placenta,” explained lead researcher Dr Jennifer Zenker.

In this study, the research team has discovered how this decision-making process is facilitated by capturing the inner organisation of single cells of the early embryo.

“Ribonucleic acid, RNA, plays a key role here. At the 16-cell stage, the different subtypes of RNA, named rRNAs, mRNAs and tRNAs, are sorted to the two ends of a cell called apical and basal side.  The distribution of RNA subtypes determines what the next generation of cells of the embryo will become,” Dr Zenker said. 

Interestingly, while most mRNAs and tRNAs remain parked at the apical side, most rRNA molecules travel down to the basal side hitchhiking on organelles called lysosomes.  Even though retaining less overall RNA content, the apical sides of outer 16-cell stage cells contain the full collection of RNAs and other factors required for protein production. 

(C) Azelle Hawdon

Credit: (C) Azelle Hawdon

The early stages of embryonic development contain many of life’s mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments.

Researchers based at the Australian Regenerative Medicine Institute (ARMI) at Monash University have characterised a critical time in mammalian embryonic development using powerful and innovative imaging techniques, with their work published in Nature Communications. 

“Just a few days into the journey of embryogenesis, when turning into 16 cells, the embryo must make its first difficult decision – which of its cells will give rise to the embryo or will become extra-embryonic tissue, for example, placenta,” explained lead researcher Dr Jennifer Zenker.

In this study, the research team has discovered how this decision-making process is facilitated by capturing the inner organisation of single cells of the early embryo.

“Ribonucleic acid, RNA, plays a key role here. At the 16-cell stage, the different subtypes of RNA, named rRNAs, mRNAs and tRNAs, are sorted to the two ends of a cell called apical and basal side.  The distribution of RNA subtypes determines what the next generation of cells of the embryo will become,” Dr Zenker said. 

Interestingly, while most mRNAs and tRNAs remain parked at the apical side, most rRNA molecules travel down to the basal side hitchhiking on organelles called lysosomes.  Even though retaining less overall RNA content, the apical sides of outer 16-cell stage cells contain the full collection of RNAs and other factors required for protein production. 

The crowded basal side, however, is occupied predominantly with rRNAs.  Daughter cells obtaining the more active protein factories of the apical side, are more transformable and specialise into the future placenta. The daughter cells which retain their potential to still become any type of cell of the adult organism, called pluripotency, receive the less translationally active bulk of rRNA.

This decision and many like it, which is known as cell fate, are important in development as it determines how these early cells reach their final cell type, such as skin cells, heart muscle cells and brain cells. For regenerative medicine, being able to orchestrate cell fate opens up the capacity to generate new stem cell-based treatments for a number of diseases and conditions. 

“As in real life, cells can influence the direction of their own future by getting organised early. Our research may open new ways to predict and direct cell fate decisions,” Dr Zenker said.

Read the full paper in Nature Communications titled: Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo  

DOI: 10.1038/s41467-023-38436-2

 



Journal

Nature Communications

DOI

10.1038/s41467-023-38436-2

Method of Research

Imaging analysis

Subject of Research

Cells

Article Title

Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo

Article Publication Date

30-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Boosting Graduate Seminar Engagement with Active Learning

August 28, 2025

Study Finds Lack of Strong Evidence Supporting Alternative Autism Treatments

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Insulin resistance in school-age children: comparison surrogate diagnostic markers as a headline for a science magazine post, using no more than 8 words

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

Rewrite Recyclable luminescent solar concentrator from lead-free perovskite derivative as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.