• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

“A blessing in disguise!” Physics turning bad into good

Bioengineer by Bioengineer
May 25, 2023
in Chemistry
Reading Time: 3 mins read
0
FIgure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter’s properties or change its form and be converted into thermal energy. Upon reaching a metallic material’s surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call “optical loss.”

FIgure 1

Credit: POSTECH

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter’s properties or change its form and be converted into thermal energy. Upon reaching a metallic material’s surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call “optical loss.”

 

Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research. New findings in physics are being made adopting non-Hermitian theory that embraces optical loss, exploring ways to make use of the phenomenon, unlike general physics where optical loss is perceived as an imperfect component of an optical system. A ‘blessing in disguise’ is that which initially seems to be a disaster but which ultimately results in good luck. This research story is a blessing in disguise in physics.

 

Prof. Junsuk Rho (Departments of Mechanical Engineering and Chemical Engineering) from POSTECH and PhD candidates Heonyeong Jeon and Seokwoo Kim (Mechanical Engineering) from POSTECH, and Prof. Yongmin Liu of Northeastern University (NEU) in Boston and their joint research team were able to control the direction of light beams using non-Hermitian meta-grating systems. The paper was featured in Science Advances, the international academic journal.

 

When light is incident on a metal surface, the electrons in the metal oscillate collectively as a single body with the light wave. The phenomenon is called surface plasmon polariton or SPP. A ‘grating coupler’ is widely used as an auxiliary device to control the directions of the SPPs. The efficiency of the device is limited in that it converts the right-angle incident light into SPPs in unintended directions.

 

The research team applied non-Hermitian theory to overcome the drawback. To start, the team calculated the theoretical exceptional point near which a certain optical loss occurs. Then, they validated its effectiveness through experiments using their specially designed non-Hermitian meta-grating coupler. The meta-grating coupler proved effective in providing unidirectional control of SSPs, which was nearly impossible with other grating couplers. They also could make light and SPP propagate in opposite directions by controlling the size and distance of meta-gratings. The research team was able to achieve the conversion of incident light into SSPs back to normal light using the same meta-grating device.

 

The research findings can be useful in quantum sensor research in various areas, such as detection of antigens for disease diagnosis or harmful gases in the atmosphere, which, combined with engineering, could open the door to a wide range of applications. Prof. Junsuk Rho, who led the team, said, “This research brought non-Hermitian optics to the nano-scale territory. It will contribute to the development of future plasmonic devices that have excellent direction controllability and performance.”

 

The research was funded by the US National Science Foundation, Samsung Science and Technology Foundation, and the National Research Foundation of Korea.



Journal

Science Advances

DOI

10.1126/sciadv.adf3510

Article Title

Subwavelength control of light transport at the exceptional point by non-Hermitian metagratings

Article Publication Date

12-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.