• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Transparent gel-based robots can catch and release live fish

Bioengineer by Bioengineer
February 1, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineers at MIT have fabricated transparent, gel-based robots that move when water is pumped in and out of them. The bots can perform a number of fast, forceful tasks, including kicking a ball underwater, and grabbing and releasing a live fish.

The robots are made entirely of hydrogel — a tough, rubbery, nearly transparent material that's composed mostly of water. Each robot is an assemblage of hollow, precisely designed hydrogel structures, connected to rubbery tubes. When the researchers pump water into the hydrogel robots, the structures quickly inflate in orientations that enable the bots to curl up or stretch out.

The team fashioned several hydrogel robots, including a finlike structure that flaps back and forth, an articulated appendage that makes kicking motions, and a soft, hand-shaped robot that can squeeze and relax.

Because the robots are both powered by and made almost entirely of water, they have similar visual and acoustic properties to water. The researchers propose that these robots, if designed for underwater applications, may be virtually invisible.

The group, led by Xuanhe Zhao, associate professor of mechanical engineering and civil and environmental engineering at MIT, and graduate student Hyunwoo Yuk, is currently looking to adapt hydrogel robots for medical applications.

"Hydrogels are soft, wet, biocompatible, and can form more friendly interfaces with human organs," Zhao says. "We are actively collaborating with medical groups to translate this system into soft manipulators such as hydrogel 'hands,' which could potentially apply more gentle manipulations to tissues and organs in surgical operations."

Zhao and Yuk have published their results this week in the journal Nature Communications. Their co-authors include MIT graduate students Shaoting Lin and Chu Ma, postdoc Mahdi Takaffoli, and associate professor of mechanical engineering Nicholas X. Fang.

Robot recipe

For the past five years, Zhao's group has been developing "recipes" for hydrogels, mixing solutions of polymers and water, and using techniques they invented to fabricate tough yet highly stretchable materials. They have also developed ways to glue these hydrogels to various surfaces such as glass, metal, ceramic, and rubber, creating extremely strong bonds that resist peeling.

The team realized that such durable, flexible, strongly bondable hydrogels might be ideal materials for use in soft robotics. Many groups have designed soft robots from rubbers like silicones, but Zhao points out that such materials are not as biocompatible as hydrogels. As hydrogels are mostly composed of water, he says, they are naturally safer to use in a biomedical setting. And while others have attempted to fashion robots out of hydrogels, their solutions have resulted in brittle, relatively inflexible materials that crack or burst with repeated use.

In contrast, Zhao's group found its formulations leant themselves well to soft robotics.

"We didn't think of this kind of [soft robotics] project initially, but realized maybe our expertise can be crucial to translating these jellies as robust actuators and robotic structures," Yuk says.

Fast and forceful

To apply their hydrogel materials to soft robotics, the researchers first looked to the animal world. They concentrated in particular on leptocephali, or glass eels — tiny, transparent, hydrogel-like eel larvae that hatch in the ocean and eventually migrate to their natural river habitats.

"It is extremely long travel, and there is no means of protection," Yuk says. "It seems they tried to evolve into a transparent form as an efficient camouflage tactic. And we wanted to achieve a similar level of transparency, force, and speed."

To do so, Yuk and Zhao used 3-D printing and laser cutting techniques to print their hydrogel recipes into robotic structures and other hollow units, which they bonded to small, rubbery tubes that are connected to external pumps.

To actuate, or move, the structures, the team used syringe pumps to inject water through the hollow structures, enabling them to quickly curl or stretch, depending on the overall configuration of the robots.

Yuk and Zhao found that by pumping water in, they could produce fast, forceful reactions, enabling a hydrogel robot to generate a few newtons of force in one second. For perspective, other researchers have activated similar hydrogel robots by simple osmosis, letting water naturally seep into structures — a slow process that creates millinewton forces over several minutes or hours.

Catch and release

In experiments using several hydrogel robot designs, the team found the structures were able to withstand repeated use of up to 1,000 cycles without rupturing or tearing. They also found that each design, placed underwater against colored backgrounds, appeared almost entirely camouflaged. The group measured the acoustic and optical properties of the hydrogel robots, and found them to be nearly equal to that of water, unlike rubber and other commonly used materials in soft robotics.

In a striking demonstration of the technology, the team fabricated a hand-like robotic gripper and pumped water in and out of its "fingers" to make the hand open and close. The researchers submerged the gripper in a tank with a goldfish and showed that as the fish swam past, the gripper was strong and fast enough to close around the fish.

"[The robot] is almost transparent, very hard to see," Zhao says. "When you release the fish, it's quite happy because [the robot] is soft and doesn't damage the fish. Imagine a hard robotic hand would probably squash the fish."

Next, the researchers plan to identify specific applications for hydrogel robotics, as well as tailor their recipes to particular uses. For example, medical applications might not require completely transparent structures, while other applications may need certain parts of a robot to be stiffer than others.

"We want to pinpoint a realistic application and optimize the material to achieve something impactful," Yuk says. "To our best knowledge, this is the first demonstration of hydrogel pressure-based acutuation. We are now tossing this concept out as an open question, to say, 'Let's play with this.'"

###

This research was supported, in part, by the Office of Naval Research, the MIT Institute for Soldier Nanotechnologies, and the National Science Foundation.

Additional background

ARCHIVE: Stretchy optical fibers for implanting in the body

ARCHIVE: Tough new hydrogel hybrid doesn't dry out

ARCHIVE: Stretchable hydrogel electronics

ARCHIVE: Hydrogel superglue is 90 percent water

Media Contact

Abby Abazorius
[email protected]
617-253-2709
@MIT

http://web.mit.edu/newsoffice

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.