• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Strategic habitat restoration can generate a win-win for forests and farmers

Bioengineer by Bioengineer
May 23, 2023
in Biology
Reading Time: 3 mins read
0
Strategic habitat restoration can generate a win-win for forests and farmers
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Carefully planned restoration of agricultural coffee landscapes can increase both farmers’ profit and forest cover over a 40-year period, according to a study publishing May 23rd in the open access journal PLOS Biology by Dr. Sofía López-Cubillos at the University of Queensland in Australia, and colleagues.

Strategic habitat restoration can generate a win-win for forests and farmers

Credit: Ganesh Subramaniam, Flickr (CC-BY 2.0, https://creativecommons.org/licenses/by/2.0/)

Carefully planned restoration of agricultural coffee landscapes can increase both farmers’ profit and forest cover over a 40-year period, according to a study publishing May 23rd in the open access journal PLOS Biology by Dr. Sofía López-Cubillos at the University of Queensland in Australia, and colleagues.

Restoring patches of natural vegetation in agricultural land presents a trade-off for farmers: while the lost cropland can reduce profitability, increases in ecosystem services like pollination can improve crop yield. To investigate how conservation priorities can be balanced with economic needs, researchers developed a novel planning framework to model the effects of forest restoration on agricultural profits, accounting for the beneficial effect of pollinators. They considered the best spatial arrangement for restoring forests to achieve one of two goals — restoring forest while also expanding agriculture, or restoring forest only — and applied this to a case study of coffee farming in Costa Rica.

They divided the study area into a grid of over 60,000 squares and estimated the current coffee yield, bee abundance, and profitability for each square. Calculating coffee profits 5 years and 40 years into the future under a variety of restoration scenarios, they found that strategically allocating land to agriculture and forest could increase economic returns, compared to a baseline in which the current landscape was maintained. Over a 5-year period, prioritizing restoration was more profitable than strategies that simultaneously expanded agricultural land. After 40 years, strategically balancing conservation and agricultural profits could increase forest cover by 20% while doubling profits for landholders, even when accounting for agricultural land replaced by forest.

The study is the first to consider how long-term changes in pollinator abundance can influence the costs and benefits of restoring forest across agricultural landscapes. The results show that with careful planning, pursuing conservation goals can improve economic outcomes for farmers, rather than being a burden, the authors say.

López-Cubillos adds, “Bee abundance and the pollination services they provide can increase through restoration. This study explored the trade-offs between coffee profitability and forest restoration, finding that within five years profits increased by ~90% after restoration and forest restored area by 20%.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002107

Citation: López-Cubillos S, McDonald-Madden E, Mayfield MM, Runting RK (2023) Optimal restoration for pollination services increases forest cover while doubling agricultural profits. PLoS Biol 21(5): e3002107. https://doi.org/10.1371/journal.pbio.3002107

Author Countries: Australia

Funding: see manuscript



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002107

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.