• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Recently discovered protein domain regulates collagen transport

Bioengineer by Bioengineer
May 22, 2023
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How collagen reaches its site of action

Moth

Credit: Ian Glaves

How collagen reaches its site of action

Almost all organisms that have more than one cell require collagen to hold their bodies together. In some mammals, it accounts for up to 30 per cent of body weight. Collagen is a huge protein that is produced in the so-called endoplasmic reticulum, an organelle inside cells. It then has to be exported from the organelle and from the cell, because it is needed in the space between the cells in the connective tissue.

A family of proteins known as TANGO1 is responsible for identifying and transporting the collagen. Made up of more than 1,000 amino acids, these proteins are very large indeed. TANGO1 proteins sometimes spread across various cell organelles and the cytoplasm. When the TANGO1 protein detects a maturating collagen, it supports the formation of a tunnel-like lipid connection that transports the collagen from its place of manufacture to its site of action.

A distinct structure

In order to perform these mechanisms, TANGO1 has a specific domain, i.e. a functional area with a defined 3D structure. “Up to now, we have assumed that this domain is similar to the so-called SH3 structure and regarded it as a substructure,” says Raphael Stoll. In the current study, however, he and Oliver Arnolds demonstrated by means of NMR spectroscopy that there are structural differences between the collagen-recognition domain of TANGO1 and the canonical SH3 domain. These differences are so significant in terms of biochemistry that they warrant referring to this TANGO1 domain as a separate structure. Hence, they named this collagen-recognising domain MOTH. “The name is an acronym for the total of four proteins that adopt exactly this structure: MIA, Otoraplin, TALI/TANGO1 homology,” explains Raphael Stoll.

The discovery of the MOTH domain provides insights into evolution, because both vertebrates and invertebrates such as insects need collagen. “The MOTH domain is very old in evolutionary terms, approximately several hundred million years,” points out Raphael Stoll. However, as invertebrates separated from vertebrates, the domain changed during evolution. “We assume that this process has coincided with the evolution of several different collagens. While insects have only one collagen, humans are found to have 28 different variations of it. These findings help improve our understanding of the collagen export process and could prove useful in future drug developments for fibrosis,” concludes Stoll.



Journal

Nature Communications

DOI

10.1038/s41467-023-37705-4

Method of Research

Computational simulation/modeling

Subject of Research

Cells

Article Title

Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos

Article Publication Date

20-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Technique Unveiled for Neutrino Detection

July 31, 2025
Engineered Enzyme Enables Precise Construction of Complex Molecules

Engineered Enzyme Enables Precise Construction of Complex Molecules

July 31, 2025

Kansas Nuclear Physicists’ Techniques Uncover Gold Formation in Large Hadron Collider Collisions

July 30, 2025

New Research Unveils Promising Window for Dark Matter Exploration

July 30, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Deployable Rooftop Solar Across Chinese Cities

Innovative Technique Unveiled for Neutrino Detection

New Insights into Photovoltaic Energy Generation Uncovered by Researchers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.