• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists discover semi-metallization and novel photoelectric behavior in lead iodide under high pressure

Bioengineer by Bioengineer
May 12, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Accoding to a research published in Advanced Optical Materials, Prof. DING Junfeng and his team at the Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, reveals that semiconductor PbI2 undergoes a transition to a semimetallic state when subjected to pressure. This transition is accompanied by the enhancement of photoelectric properties as well as the spectral response range expanded to infrared band.

Scientists Discover Semi-metallization and Novel Photoelectric Behavior in Lead Iodide under High Pressure

Credit: CHENG Peng

Accoding to a research published in Advanced Optical Materials, Prof. DING Junfeng and his team at the Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, reveals that semiconductor PbI2 undergoes a transition to a semimetallic state when subjected to pressure. This transition is accompanied by the enhancement of photoelectric properties as well as the spectral response range expanded to infrared band.

PbI2 is a versatile semiconductor with applications in X-ray and gamma ray detection, as well as perovskite solar cell development. By compressing the lattice constants and inducing structural transition, the employment of hydrostatic pressure can be used to modify structural and electronic properties. Therefore, pressure may be an effective method to promote the photoelectric performance of PbI2.

In this study, researchers made a significant discovery regarding the behavior of PbI2 under pressure.

The high-pressure absorption spectra of PbI2 suggested that the electrical band was closed at the transition point, while the charge transport indicated that the sample remained not metallic. Non-metallic transport was well explained by the development of a semimetal phase at high pressure, as determined by first-principles calculations of the photocurrent spurt and infrared band response.
The semiconductor-semimetal transition in PbI2 was further confirmed by the notable decrease in lifetime to a few picoseconds in ultrafast spectroscopy under pressure. Moreover, the responding band expanded from visible light to the telecom wavelength of at least 1550 nm.

“Our team employed several techniques to systematically investigate the behavior of PbI2 under high pressure. Through our study, we were able to settle a long-standing controversy surrounding its high-pressure phase and identify inconsistencies between crystal and electronic transitions,” explained CHENG Peng, the lead author of the paper. “This research represents a detailed investigation into the electronic structure phase transition of PbI2 under high pressure.”

Pressure-induced semimetallization presented a new strategy for designing a high-performance photodetector with broadband response.



Journal

Advanced Optical Materials

Article Title

Semiconductor–Semimetal Transition-Driven Photocurrent Spurt and Infrared Band Response in Lead Iodide at High Pressure

Article Publication Date

23-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025
blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microhaplotype Panel Advances Brazilian Human Identification

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.