• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Earth’s first animals had particular taste in real estate

Bioengineer by Bioengineer
May 9, 2023
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Even without body parts that allowed for movement, new research shows — for the first time — that some of Earth’s earliest animals managed to be picky about where they lived. 

Obamus coronatus

Credit: Nobu Tamura

Even without body parts that allowed for movement, new research shows — for the first time — that some of Earth’s earliest animals managed to be picky about where they lived. 

These creatures from the Ediacaran Period, roughly 550 million years ago, are strangely shaped soft-bodied animals that lived in the sea. Researchers have long considered them enigmatic. 

“It’s not like studying dinosaurs, which are related to birds that we can observe today,” said Phillip C. Boan, UC Riverside paleontology graduate student and lead author of the new study. “With these animals, because they have no modern descendants, we’re still working out basic questions about how they lived, such as how they reproduced and what they ate.”

For this particular research project, the researchers focused on understanding where in the sea the animals spent their lives. 

The ancient sea was also a largely foreign place compared to today’s marine environments. It was dominated by a mat on the sea floor composed of bacteria and layers of other organic materials. In addition, predatory creatures were uncommon.

Given the alien nature of Ediacaran Earth, the researchers were surprised to find an animal that lived much the way barnacles do today. A new Paleobiology paper details how Obamus coronatus, named for the former U.S. president, opted to live on specific parts of the sea floor in the company of other Obamus. 

The animal averaged about a half-inch in diameter and was “shaped like a French cruller donut with ribbons on top,” Boan said. It did not move of its own accord, and likely spent its entire life embedded in its preferred spot on the sea floor. 

“We think about the very oldest animals and maybe you wouldn’t expect them to be so picky. But Obamus only occurs where there is a thick mat, and it’s a pretty sophisticated way of making a living for something so very old,” said Mary Droser, UCR distinguished professor of paleontology and study co-author.

In 2018, Droser’s laboratory named the Obamus in honor of Barack Obama’s passion for science. Her group discovered it at an extraordinarily well-preserved fossil site in the Australian Outback, at what is now called Nilpena Ediacara National Park. 

A series of storms buried the Ediacaran sea floor at Nilpena in layers of sediment, helping preserve sandstone impressions of entire animal communities that lived together there. “This way, we’re able to piece together whole ecosystems,” Droser said. “Looking at them is like snorkeling around on the ancient sea floor, instead of looking at a single animal in a fish tank.”

For this project, the research team selected three animals found in relatively large numbers at Nilpena, and examined how they were geographically distributed. 

The other two animals, Tribrachidium and Rugoconites, are also immobile creatures with no modern descendants. “They are tri-radially symmetrical, like the Mercedes Benz logo,” Boan said. “And they would have lived their entire lives embedded in the sea floor, as Obamus did.”

Distribution for these other two animals was varied. Sometimes they could be found living in the company of other organisms like themselves, but not in every instance. However, Obamus displayed a clear preference. 

“This is really the first example of a habitat-selective Ediacaran creature, the first example of a macroscopic animal doing this,” Boan said. “But how did they get where they wanted to go? This is a question we don’t yet know the answer to.”

The research team theorizes that Obamus were likely motivated by the need to reproduce. 

“There are a limited number of reproductive strategies, especially for animals like these,” Droser said. “There are more strategies today, and they’re more elaborate now. But the same ones used today were still being used 550 million years ago.” 

Obamus likely spread itself via selective larva that preferred locations with thick microbial mat and near other Obamus. “We don’t entirely understand how Obamus offspring spread out, but we know that when they picked a place to live, it was very specific,” Boan said. 

A deeper understanding of how life on Earth developed over time can give researchers insight into how life could develop on another planet. For this reason, Droser’s lab is funded by NASA’s Exobiology program. 

“This is our window into how a complex ecosystem forms,” Boan said. “We only have Earth, and we need to use every part of its history when thinking about life, even way off in the cosmos.”



Journal

Paleobiology

DOI

10.1017/pab.2023.9

Article Title

Spatial distributions of Tribrachidium, Rugoconites, and Obamus from the Ediacara Member (Rawnsley Quartzite), South Australia

Article Publication Date

13-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.