• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Why are there so few insects in the ocean?

Bioengineer by Bioengineer
May 6, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Scientists from Tokyo Metropolitan University have proposed a hypothesis for why insects are so rare in marine environments. They previously showed that insects evolved a unique chemical mechanism to harden their shells which uses molecular oxygen and an enzyme called multicopper oxidase-2 (MCO2). Now, they argue that this gives them a disadvantage in the sea, while it confers advantages that help them on land, placing MCO2 at the heart of insect eco-evolution.

Different cuticle hardening mechanisms in crustaceans and insects.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Scientists from Tokyo Metropolitan University have proposed a hypothesis for why insects are so rare in marine environments. They previously showed that insects evolved a unique chemical mechanism to harden their shells which uses molecular oxygen and an enzyme called multicopper oxidase-2 (MCO2). Now, they argue that this gives them a disadvantage in the sea, while it confers advantages that help them on land, placing MCO2 at the heart of insect eco-evolution.

Insects are some of the most successful organisms on the planet. They are said to make up the most biomass of all terrestrial animals and have a significant impact on the global ecosystem. However, their abundance is matched by their startling rarity in the sea. Very few insects call the sea home, even though their biological ancestors came from there. It is a pervading mystery of science, one which scientists have been trying to answer for many years.

Now, researchers from Tokyo Metropolitan University led by Assistant Professor Tsunaki Asano have proposed a solution based on evolutionary genetics. The latest in molecular phylogenetics has taught us that both crustaceans and insects are part of the same family, Pancrustacea, and that insects were a branch that left the sea and adapted to the land. They share an important feature, an exoskeleton consisting of a wax layer and hard cuticle. In previous work, the same team showed that when insects adapted to terrestrial environments, they evolved a unique gene that creates an enzyme called multicopper oxidase-2 (MCO2) that helps them harden their cuticles using oxygen. MCO2 mediates a reaction where molecular oxygen oxidizes compounds called catecholamines in the cuticle, turning them into agents that bind and harden the surface. This is in contrast to crustaceans who harden their cuticles using calcium from sea water instead. The team’s claim is that this makes the land far more suitable for insects due to the abundance of oxygen. The sea is now a harsh environment due to both the lack of oxygen and the abundance of better adapted organisms.

But it is not just that the sea is not as hospitable for insects anymore. The hardening and drying of the cuticle via the MCO2 pathway lead to a biomaterial which is not only protective, but also lightweight. They postulate that this may be why insects gained the ability to climb plants, glide, and eventually fly. This allowed them to migrate and occupy previously empty niches in the ecosystem, a strong driving force that led to their sheer numbers.  Again, this is in contrast to crustaceans, whose shells are significantly denser, with a strong correlation between density and the degree of calcification.

Of course, insects are hardly the only arthropods to adapt to the land, so it’s clear that MCO2 is not strictly necessary for success in “terrestrial niches.” However, the nature of insect cuticles speaks volumes about their success in the terrestrial environment. In fact, the team believe that MCO2 might be a defining feature of insects: “no MCO2, no insects.” Their work promises an entirely new highlight on the role that cuticle hardening might play in insect evolution and terrestrialization.



Journal

Physiological Entomology

DOI

10.1111/phen.12406

Article Title

Eco-evolutionary implications for a possible contribution of cuticle hardening system in insect evolution and terrestrialisation

Article Publication Date

17-Apr-2023

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025
Electrons Unveil Their Handedness in Attosecond Flashes

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

Decoding Electrolytes and Interface Chemistry to Advance Sustainable Nonaqueous Metal–CO2 Batteries

August 27, 2025

Paving the Way to Pharmaceutical Superintelligence: Insilico Medicine Unites Industry Leaders at BioHK 2025 to Transform AI in Healthcare

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Learning Themes in Home-Visit Education

Weight Bias in Pediatric Care: A Closer Look

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.