• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How spheres become worms

Bioengineer by Bioengineer
April 27, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hydrogels? Many people use these substances without knowing it. As superabsorbents in nappies, for example, hydrogels absorb a lot of liquid. In the process, the initially dry material becomes Jelly-like, but it does not wet. Some people place the swellable material on their eyeballs – soft contact lenses are also just hydrogels. The same goes for jelly and other everyday materials.

From Spheres to Worms

Credit: Theresa Zorn / University of Wuerzburg

Hydrogels? Many people use these substances without knowing it. As superabsorbents in nappies, for example, hydrogels absorb a lot of liquid. In the process, the initially dry material becomes Jelly-like, but it does not wet. Some people place the swellable material on their eyeballs – soft contact lenses are also just hydrogels. The same goes for jelly and other everyday materials.

Hydrogels also play a role in science. From a chemical point of view, they are long, three-dimensionally cross-linked polymer molecules that form cavities. Inside, they can absorb and hold water molecules.

In the working group of former Würzburg chemistry professor Robert Luxenhofer, the suitability of hydrogels for biofabrication is being tested: For example, hydrogels can be used for 3D printing as scaffold structures, on which cells can be attached. In this way, for example, artificial tissues can be produced for medical research and regenerative therapies.

Hydrogel formation posed a puzzle

During this research, Dr. Lukas Hahn in Luxenhofer’s team noticed an unusual form of hydrogel formation. He observed it in polymers intended for nanomedicine, specifically for drug delivery.

These polymers arrange themselves into spherical nanoparticles in water at 40 degrees. When the water is cooled to below 32 degrees, the spheres cluster into worm-like structures and a gel is formed. When heated, it dissolves again.

“This behaviour is very rare in synthetic polymers and was completely unexpected,” explains Robert Luxenhofer, who now teaches and researches at the University of Helsinki. If it does occur, the gel formation is usually due to hydrogen bonds – attractive forces between polar functional groups involving hydrogen atoms that have a stabilising effect. Such interactions are of central importance for the structure and function of proteins, for example.

However, things are quite different with the polymers we are dealing with here. In terms of their chemical structure, they are not capable of forming hydrogen bonds with each other. Apparently, the researchers had stumbled upon an unknown mechanism of gel formation.

Breakthrough with NMR spectroscopy

To solve the puzzle, Robert Luxenhofer sought a cooperation with chemistry professor Ann-Christin Pöppler at Julius-Maximilians-Universität Würzburg (JMU), an expert in the characterisation of nanoparticles made of polymers. In cooperation with other research groups, her team took a closer look at the peculiar form of gel formation – a complex puzzle that took a good two years to solve.

“We were able to elucidate the unknown mechanism because we used a wide variety of analytical tools. In the end, however, the breakthrough came with various methods of NMR spectroscopy,” explains the JMU chemist. Her doctoral student Theresa Zorn found out what leads to gel formation in this case: specific interactions between amide groups of the water-soluble and phenyl rings of the non-water-soluble polymer building blocks. These interactions cause the spherical nanoparticles to condense and restructure into worm-like structures.

The findings could be confirmed by theoretical calculations: Dr Josef Kehrein, a former PhD student of JMU professor Christoph Sotriffer, an expert in computer-aided modelling of three-dimensional interactions between molecules, succeeded in doing so. He, too, is now working in Helsinki.

The results have been published in ACS Nano, a journal of the American Chemical Society (ACS). The German Research Foundation (DFG), the Academy of Finland and other supporters funded the work.

Which research steps follow

Where do we go from here? The researchers are convinced that the newly discovered mechanism of hydrogel formation is also relevant for other polymers and for their interactions with biological tissues.

Therefore, the team wants to chemically modify the polymers to see how this affects their properties and hydrogelation. It may be possible to specifically influence the gelation temperature as well as the strength and durability of the gel. From the modified materials, one could select those that are most suitable for use in biofabrication.

Funded by the Universitätsbund Würzburg, Ann-Christin Pöppler’s team also wants to investigate whether the nanoparticles and thus also the hydrogel can be loaded with “guest molecules”. This might be interesting for medical applications – if the gel dissolves at body temperature, it could release the active substances with which it was previously loaded. Applications in the form of implants, plasters or contact lenses are conceivable.



Journal

ACS Nano

DOI

10.1021/acsnano.3c00722

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Unraveling an Alternative Mechanism in Polymer Self-Assemblies: An Order–Order Transition with Unusual Molecular Interactions between Hydrophilic and Hydrophobic Polymer Blocks

Article Publication Date

27-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

Thirst in Post-Surgery Children: A Cross-Sectional Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.