• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias

Bioengineer by Bioengineer
April 18, 2023
in Chemistry
Reading Time: 2 mins read
0
Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Prof. Yuchao Zhang (Key Laboratory of Photochemistry, Chinese Academy of Sciences).

Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias

Credit: ©Science China Press

This study is led by Prof. Yuchao Zhang (Key Laboratory of Photochemistry, Chinese Academy of Sciences).

Photoelectrochemical (PEC) water oxidation reaction has attracted considerable attention in recent years because of its importance in solar energy conversion. For such a sluggish four-hole and four-proton transfer reaction in a long timescale of ms–s, more and more studies have shown that the accumulation of multiple surface-trapped holes (e.g., high-valent iron oxo on hematite surfaces) or “oxidizing equivalents” is a prerequisite for efficient PEC water oxidation process. Previous PEC water oxidation studies commonly apply high potentials (>1.2 VRHE) to achieve this key. But how to complete multi-hole transfer under low bias (near the onset potential) remains unknown.

Recently, Zhang’s research group studied the important role of excitation energy in the multi-hole accumulation process. PEC characterizations and rate law analysis showed that the UV excitation could significantly boost the accumulation of multiple surface-trapped holes, thereby cathodically shifting the onset potential by 220 mV and improving the PEC water oxidation activity by one order of magnitude. Subsequent bulk transport dynamics and surface charge-transfer kinetics demonstrated that compared with the visible-light excitation, the UV excitation reduced the formation probability of self-trapped excitons and resulted in ~3 to 5-fold increase of surface holes, which accounted for the promoted multi-hole accumulation process. These advantages enable the UV excitation to contribute about 40% to the total photocurrent under 1 solar illumination, even though its energy only occupies 6% of the incident light. This mechanism was also applicable to boost other multi-hole catalysis (such as the oxidation of thioether and nitrite) under low bias.

See the article:

Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias

https://engine.scichina.com/doi/10.1007/s11426-022-1527-9



Journal

Science China Chemistry

DOI

10.1007/s11426-022-1527-9

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.