• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cosmic dust that formed our planets traced to giant stars

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have identified the origin of key stardust grains present in the dust cloud from which the planets in our Solar System formed, a study suggests.

Researchers have solved a long-standing puzzle concerning the source of the grains, which formed long before our Solar System and can be recovered from meteorites that fall to Earth.

The stars that produced the dust were identified by observing how key reactions shaped the make-up of the grains, scientists say.

During their lifetime, stars around six times larger than the Sun – called Asymptotic Giant Branch or AGB stars – blow off their outer layers, forming an interstellar cloud of gas and dust grains.

Our Solar System is believed to have formed from such a cloud around 4.6 billion years ago, the team says. While most of the grains were destroyed in the process of making new rocks and planets, a small fraction survived and is present in meteorites.

The chemical composition of the dust grains reveals important clues about the nuclear processes inside stars that led to their formation, the team says. Until now, however, tracing the origin of the grains to AGB stars had proven difficult.

While AGB stars are known to produce vast amounts of dust, the composition of grains recovered from meteorites did not seem to match those expected from these stars, researchers say.

The study solves this puzzle by identifying in the make-up of some meteoritic dust grains the effect of the nuclear reactions that occur in AGB stars.

A team of nuclear physicists found that fusion reactions between protons and a form of oxygen that is heavier than the type we breathe – called 17O – occur twice as often as was previously thought.

The effect of these nuclear reactions is clearly observed in some stardust grains found in meteorites, resolving the mystery of their origin, the team says.

The discovery was made by an international team of researchers, including scientists at the University of Edinburgh, at an underground laboratory in Italy.

The Laboratory for Underground Nuclear Astrophysics – or LUNA – is located more than 1km beneath the Earth's surface. The facility is hosted by the Italian Institute for Nuclear Physics Gran Sasso Laboratory.

The study is published in the journal Nature Astronomy. The LUNA Collaboration involves around 40 scientists from 14 institutions in Italy, Germany, Hungary and the UK.

Professor Marialuisa Aliotta, of the University of Edinburgh's School of Physics and Astronomy, who led LUNA's UK team, said: "It is a great satisfaction to know that we have helped to solve a long-standing puzzle on the origin of these key stardust grains. Our study proves once again the importance of precise and accurate measurements of the nuclear reactions that take place inside stars."

Dr Maria Lugaro, of Konkoly Observatory, Hungary, who led the study, said: "The long-standing question of the missing dust was making us very uncomfortable: it undermined what we know about the origin and evolution of dust in the Galaxy. It is a relief to have finally identified this dust thanks to the renewed LUNA investigation of a crucial nuclear reaction."

###

Media Contact

Corin Campbell
[email protected]
44-131-650-6382
@edinunimedia

http://www.ed.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.