• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Male beetles neglect their genomes when competing for females

Bioengineer by Bioengineer
April 4, 2023
in Biology
Reading Time: 3 mins read
0
Male beetles neglect their genomes when competing for females
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Male beetles face a trade-off between competing with other males for mating opportunities and repairing damage to their sperm DNA, according to a study publishing April 4th in the open access journal PLOS Biology by Mareike Koppik from Uppsala University, Sweden, and colleagues.

Male beetles neglect their genomes when competing for females

Credit: Mareike Koppik (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

Male beetles face a trade-off between competing with other males for mating opportunities and repairing damage to their sperm DNA, according to a study publishing April 4th in the open access journal PLOS Biology by Mareike Koppik from Uppsala University, Sweden, and colleagues.

Mutations in sperm and egg DNA can reduce the survival and fitness of offspring, so animals use a variety of repair and maintenance mechanisms in their reproductive cells. However, previous research has shown that sperm DNA has more mutations than egg DNA in a variety of species, suggesting that there may be a trade-off between competing for access to females and investing energy in repairing damaged DNA. The researchers investigated this hypothesis using laboratory colonies of the seed beetle (Callosobruchus maculatus) that had undergone 50 generations of experimental evolution. They compared male beetles from lineages that were manipulated to be monogamous, therefore minimizing sexual selection (“N males”) with lineages that had experienced intense sexual selection but minimal natural selection (“S males”). They found that S males fathered more offspring than N males in sperm competition experiments. However, after exposure to DNA-damaging radiation, S males produced lower quality offspring compared to N males and control males. Using RNA sequencing, the team identified 18 genes that changed their activity in the reproductive tracts of males in response to radiation. Several of these genes are thought to play roles in cellular maintenance and DNA repair. A male’s post-radiation gene expression profile was correlated with the survival and fertility of his offspring.

The authors say that males from lineages exposed to intense sexual selection invest more in competition with other males, at the expense of repairing DNA damage. This suggests that sexual selection can drive the evolution of greater flexibility in male reproductive traits.

“In these beetles, as in many other species with internal fertilization, intense male competition for mating success continues among the sperm of rival males inside the female after the mating itself is done,” coauthor David Berger adds. “Our study shows that males that invest too much into this competition, while winning the race for fertilization of female eggs, seem to care less about maintaining the quality of their sperm, with the cost of this strategy being paid by their future offspring.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002049

Citation: Koppik M, Baur J, Berger D (2023) Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biol 21(4): e3002049. https://doi.org/10.1371/journal.pbio.3002049

Author Countries: Germany, Sweden

Funding: This work was financially supported by Vetenskapsrådet (https://www.vr.se, grant no. 2019-05024 to DB), by Carl Tryggers Stiftelse för Vetenskaplig Forskning (https://www.carltryggersstiftelse.se, grant no. CTS18:32 to DB), and by Fysiografiska sällskapet i Lund (https://www.fysiografen.se, “Nilsson-Ehle” to MK). The financial funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002049

Method of Research

Experimental study

Subject of Research

Animals

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.