• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Keeping antennas at peak performance

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Advanced statistical techniques developed by KAUST researchers have enabled an efficient method for detecting the partial antenna failures that can inconspicuously degrade mobile communications1.

Modern antenna systems in mobile devices and transmission towers are increasingly being set up as arrays of antenna elements to increase performance, directionality, bandwidth and safety. For example, by adjusting the phase of individual antenna elements, the radiation pattern from an antenna array in a mobile phone can be directed away from the user for safety, while the radiation pattern from a transmission tower can be concentrated on a specific area for improved coverage.

Major faults in such systems are easily identified due to the sudden loss of wireless connection, but a fault in one element of an array system can be much more difficult to detect. Such partial failures, however, can significantly change the radiation pattern from the array, potentially seriously degrading network performance.

Assistant Professor of Applied Mathematics and Computational Science Ying Sun and her postdoc Fouzi Harrou from the University's Computer, Electrical and Mathematical Sciences and Engineering Division have now developed an efficient statistical technique to detect individual faults in antenna arrays.

"There is a demand for high-performance antenna array systems in numerous applications, such as radar surveillance, biomedical imaging, remote sensing, radio astronomy and satellite communications," said Sun. "However, individual antenna elements can develop faults due to the settling of dust particles, poor design, electronic failure, improper use or a shift in the position of the array element during installation. We want to be able to monitor arrays e?ciently to identify anomalies that could degrade the performance and reliability of the antenna system."

Rather than monitoring the elements individually, which would require the integration of additional and complex electronics into an already complex system, Sun and Harrou's method detects faults based on the change in the radiation pattern. Harrou explained by saying "We use what is called a generalized-likelihood ratio test to construct a control chart that can then be used as a reference to detect variations from the desired radiation pattern."

"The advantage of our approach is that it requires only one design parameter, making it easy to implement in real time due to its low-computational cost," said Harrou.

The researchers successfully demonstrated the sensitivity of their approach in a number of simulated scenarios, proving its potential for commercial application.

###

Media Contact

Michelle D'Antoni
[email protected]
966-028-083-122

http://kaust.edu.sa/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Callistemon Fruit Extracts’ Cancer-Fighting Abilities

January 15, 2026

Age-Related Tradeoffs in Mouse Disease Tolerance

January 15, 2026

Discrepancy in Deprescribing Choices Among Swiss Doctors, Seniors

January 15, 2026

Nrf2 Boosts Neuronal Growth and Recovery Post-Stroke

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Callistemon Fruit Extracts’ Cancer-Fighting Abilities

Age-Related Tradeoffs in Mouse Disease Tolerance

Discrepancy in Deprescribing Choices Among Swiss Doctors, Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.