• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Small but mighty: Fruit fly muscles

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Caltech

Fruit flies are capable of impressive aerial maneuvers, as is grudgingly acknowledged by anyone who has unsuccessfully tried to swat away one of the familiar kitchen pests. Interestingly, the flies perform these nimble evasive movements using only 12 flight muscles, each controlled by one brain cell, or neuron. In comparison, hummingbirds can produce almost identical aerial patterns but use 100 times more neurons per muscle.

Now, new research from Caltech provides the first understanding into how so few muscles produce such complex flight.

The findings, an advance at the intersection of biomechanics and neurobiology, are described in a paper appearing in the January 26 issue of Current Biology.

Key to understanding how flies control their flight is their complex wing hinge–the elaborate joint that transforms the action of muscles inside the body into the sweeping motion of the wing.

"Because the wings of birds, bats, and pterosaurs evolved from limbs, they are equipped with shoulder, elbow, wrist, and finger joints–each with their own set of muscles," says Michael Dickinson, Caltech's Esther M. and Abe M. Zarem Professor of Bioengineering. Flying insects, on the other hand, do not have any muscles in their wings. Rather, there is a single, mechanically elaborate joint called the wing hinge connecting the wing to the body; it is controlled by power muscles and steering muscles. "The evolution of the insect wing is one of the most important moments in evolutionary history. Insects developed the ability to fly and subsequently changed our planet, pollinating flowers and driving ecosystems," he says. "We have no idea how fly wings evolved. Until now, we also did not know how flies controlled them."

"Insect power muscles are the most powerful muscles in any animal on the planet," says Thad Lindsay, first author on the paper and postdoctoral scholar in biology and biological engineering. "However, this means that they are ill-suited to actually control wing movement precisely. That's where the tiny steering muscles come in."

The group discovered that the muscles flies use to steer are divided into two types. One type, the tonic muscles–there are five–are always in use, making fine-tuned adjustments to steer the fly. The other type, the seven phasic muscles, are largely inactive unless a rapid, powerful movement is required. These steering muscles are affixed to four skeletal structures at the base of the wing; each structure is equipped with at least one tonic and one phasic muscle to control the wing's motion.

The team studied these minuscule muscles–their length is about the width of a human hair–by using genetically modified fruit flies. Muscles contract when their calcium levels rise, and these fruit flies were engineered to produce a protein that glows with different intensity depending on the amount of calcium present. Each fly was tethered to a pin and placed within a fruit-fly flight simulator, where it was presented with visual stimuli to simulate various directions of rotation, such as pitching forward or rolling sideways. The fly's wing muscles responded accordingly and a specialized microscopic camera recorded the muscles as they lit up brightly.

The researchers found that a division of labor within the steering muscles provides flies with an elegant and efficient means of flight control. The tonic muscles act continuously to keep the fly in perfect trim, while the fly activates the phasic muscles only when it needs to perform a rapid maneuver.

"Much of neuroscience is about sensory information and sensory systems like vision, olfaction, and hearing," Dickinson says. "We know so much less about how the motor systems of animals are organized. But now that we understand the organization of the flight system of flies, it gives us a clear set of blueprints for how to study the entire brain because we have a much better idea of how sensory information flows through the brain. It is a little bit like solving a mystery by skipping ahead to the end of a novel. We had no idea that we would see such a clean kind of overarching organization in the animal's motor system."

###

The paper is titled "The function and organization of the motor system controlling flight maneuvers in flies." Anne Sustar of the University of Washington is a coauthor. The work was funded by the National Science Foundation.

Media Contact

Lori Dajose
[email protected]
626-658-0109
@caltech

http://www.caltech.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.