• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

On the track of the Big Bang: The most sensitive detector for measuring radioactivity is now in Dresden

Bioengineer by Bioengineer
February 22, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What is dark matter? What are neutrinos all about? How do stars work and what was actually going on in the universe in the first minutes after the Big Bang? To answer these questions, you need very sensitive detectors and a lot of skill. Only a few laboratories in the world have been able to perform such sensitive measurements so far. Recently, however, an ultra-sensitive detector has been set up in Germany, which will enable researchers to find answers to these questions in the future.

Portrait Zuber, Turkat

Credit: Max Osswald

What is dark matter? What are neutrinos all about? How do stars work and what was actually going on in the universe in the first minutes after the Big Bang? To answer these questions, you need very sensitive detectors and a lot of skill. Only a few laboratories in the world have been able to perform such sensitive measurements so far. Recently, however, an ultra-sensitive detector has been set up in Germany, which will enable researchers to find answers to these questions in the future.

After long development work, researchers from the Institute for Nuclear and Particle Physics (Technische Universität Dresden) and the Institute for Radiation Physics (HZDR) have now put the setup into operation in the underground laboratory “Felsenkeller” Dresden. From now on, they will be able to analyze samples of substances and materials with a radioactivity in the range of 100 microbequerels, in other words, samples with 100 million times less radioactivity than is present in the human body. This puts the measurement setup in the Felsenkeller laboratory among the world’s most sensitive measuring instruments for radioactivity.

“If you want to study rare processes and low activities in physics, you basically need two things: on the one hand, a lot of patience – because the processes rarely take place – and on the other hand, an environment that is as low in radiation as possible so that the detector is not permanently disturbed by natural sources of radiation,” explains Steffen Turkat, TUD staff member at the Felsenkeller Laboratory.

To this end, the 45-meter-thick rock overburden in the tunnel of the former ice storage facility of the Dresden Felsenkeller brewery protects the detector from most of the cosmic radiation, but not from natural radioactivity from the environment. Therefore, the researchers had to protect the detector with a sophisticated setup based on low-radiation concrete walls, large amounts of lead and copper, and so-called veto detectors. This is the only way this highly sensitive setup can function and evaluate nuclear transitions from valuable samples.

“I am particularly pleased about the large number of unplanned inquiries from interested colleagues worldwide who would now like to use the detector. These requests quickly involve extremely valuable and rare samples that are scientifically very exciting but which cannot be analyzed with other detectors. A detector like this automatically generates new collaborations and networks with other fascinating fields,” explains Steffen Turkat.

Prof. Kai Zuber of Technische Universität Dresden is the scientific director of the Felsenkeller laboratory and is particularly looking forward to being able to pursue his own challenging research interests in physics beyond the Standard Model: “I am particularly interested in double beta decay and the search for charged lepton violation. Furthermore, my focus lies on the study of the half-lives of radionuclides. The new detector at Felsenkeller is excellently suited for that.”

Prof. Daniel Bemmerer, Technical Director of the Felsenkeller Laboratory and Group Leader for Nuclear Astrophysics at HZDR, is also excited about the new possibilities offered by the detector: “We can now perform activation measurements for nuclear fusion experiments at energies much closer to the actual energies and temperatures in our Sun than was previously possible. This also creates a new synergy for the Felsenkeller accelerator.”

In addition to the new detector, Germany’s deepest underground physics laboratory already has an ion accelerator in operation since 2019 to study the most important processes inside stars.

The detector was procured with funds from the German Research Foundation’s large-scale equipment program.

Original publication:
S. Turkat, D. Bemmerer, A. Boeltzig, A. R. Domula, J. Koch, T. Lossin, M. Osswald, K. Schmidt, K. Zuber, “A new ultra low-level HPGe activity counting setup in the Felsenkeller shallow-underground laboratory”, Astroparticle Physics, vol. 148, 102816 (2023).
DOI: 10.1016/j.astropartphys.2023.102816



DOI

10.1016/j.astropartphys.2023.102816

Share12Tweet8Share2ShareShareShare2

Related Posts

Chung-Ang University Scientists Uncover Unusual Behaviors in Nanoparticle Growth and Shrinkage

Chung-Ang University Scientists Uncover Unusual Behaviors in Nanoparticle Growth and Shrinkage

August 28, 2025
Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

August 28, 2025

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in 3D-Printed Scaffolds for Airway Repair

Breaking Boundaries: Advancing Coherent Diffractive Imaging

COPD Care Pathway Reduces Hospital Stay Duration and Increases Pulmonary Rehabilitation Referrals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.